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Smart environments established by the development of mobile technology have brought vast benefits to human being. However,
authentication mechanisms on portable smart devices, particularly conventional biometric based approaches, still remain security
and privacy concerns.These traditional systems aremostly based on pattern recognition andmachine learning algorithms, wherein
original biometric templates or extracted features are stored under unconcealed form for performingmatchingwith a newbiometric
sample in the authentication phase. In this paper, we propose a novel gait based authentication using biometric cryptosystem
to enhance the system security and user privacy on the smart phone. Extracted gait features are merely used to biometrically
encrypt a cryptographic key which is acted as the authentication factor. Gait signals are acquired by using an inertial sensor named
accelerometer in the mobile device and error correcting codes are adopted to deal with the natural variation of gait measurements.
We evaluate our proposed system on a dataset consisting of gait samples of 34 volunteers. We achieved the lowest false acceptance
rate (FAR) and false rejection rate (FRR) of 3.92% and 11.76%, respectively, in terms of key length of 50 bits.

1. Introduction

Smart environments established by the development of
mobile technology have brought vast benefits to human being
[1]. Nowadays, mobile devices could be utilized not only for
communication and entertainment but also for transaction
[2], personal healthcare [3], or even in emergency situations
[4]. As a result, more and more personal data are collected
and kept in the mobile device for analysis [5], which would
lead to increasing system security and user privacy concerns.
Basically, security techniques for authentication and identi-
fication are commonly based on password (e.g., OTP [2]),
token (e.g., ID cards), or biometric recognition (e.g., iris [6],
fingerprint [7], face [8], and gait [9] recognition). Biometric
based authentication mechanisms are more convenient in
terms of end-user usage viewpoint when comparing with the
two remaining methods of password and token. However,
using biometric authentication on mobile devices should
be considered carefully. Due to the fact that biometrics is
unique but fuzzy and revocable, most conventional biomet-
ric authentication systems are developed based on pattern
recognition and machine learning (PR-ML) algorithms to

deal with the natural variations of biometric measurement
[6]. Enrollment biometric templates or extracted features are
stored under unconcealed form for matching with a new
biometric sample to authenticate/identify users. This kind
of approaches could leave critical vulnerabilities in terms
of system security and user privacy, especially when it is
implemented on mobile devices. These devices are easily lost
so that an adversary could illegally access the mobile reposi-
tory to obtain original biometric templates. Since biometrics
is tied to unique characteristics of an individual which are
hardly changed, the user privacy leak means an adversary
could partly or fully determine the user’s biometrics. From
the viewpoint of system security, a compromise of biometric
templates results in everlasting forfeiture. An adversary could
utilize compromised templates to thereafter always illegally
grant access to sensitive services.

In this paper, we introduce an authentication system
based on biometric cryptosystem (BCS) to enhance the
system security and user privacy on mobile devices. The
biometric modality used in our system is human gait which
is collected using an inertial sensor named accelerometer
attached to the user’s body. This type of sensor has been
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utilized to propose motivating applications in smart phones
recently [3]. To the best of our knowledge, this is the first
approach of a BCS using gait biometrics captured from
the accelerometer. We utilize a fuzzy commitment scheme
[10] whereby the key, acting as an authentication factor, is
biometrically encrypted by the user’s gait. The gait sample
is merely employed to retrieve the cryptographic key and
then be always discarded so that the system security and user
privacy are significantly enhanced. Moreover, the system has
significant advantages in terms of small storage space and low
computational requirements. Therefore, it is more applicable
to be deployed directly on mobile devices with limited
resources, compared with other PR-ML based systems [9].

The rest of this paper is organized as follows. Section 2
presents the related works. Our proposed system is described
in Section 3. Experimental evaluations are presented in
Section 4. Finally, Section 5 draws our conclusions.

2. Related Works

To preserve the security and user privacy of biometric
authentication systems, various modern approaches have
been proposed [11], wherein biometric cryptosystems (BCSs)
have attracted much research in recent years. State-of-the-art
BCSs which were previously proposed mostly utilize physio-
logical modalities such as iris [12], face [13], and fingerprint
[14]. There are some studies that use behavioral biometrics
such as signature [15] and voice [16]. Generally, BCSs could be
classified into 2 subsystems including key-binding and key-
generation systems [11]. In key-binding systems, a random
key string is generated and then bound with a biometric
template yielding helper data. Such data are stored for further
utilization to retrieve the key in the authentication phase.
For example, Hao et al. [17] proposed an iris based BCS
using fuzzy commitment scheme. They used 2048 bits of iris
code combined with concatenated codes and achieved the
false acceptance rate (FAR) and false rejection rate (FRR)
of 0% and 0.47%, respectively, and the key length of their
system is 140 bits. In contrast to key-binding systems—the
key generation scheme—helper data is created directly only
from the biometric template. Such helper data will associate
with a presented query which is sufficiently close to the
original template to generate either the unique key string or
the original template. Typical techniques of such scheme are
fuzzy extractor [18] and secure sketches [19]. Applications of
key-generated scheme have already been implemented on iris
[12] and voice [16]. Generally, approaches on physiological
modalities achieved better results in terms of error rates and
security level, compared with behavioral biometric factors.
This is due to the fact that physiologicalmodalities such as iris
and fingerprint aremore robust than behavioral factorswhich
are significantly affected by various conditions. For example,
human voice depends on the state of health, gait of individual
changes over time, and so forth.

3. The Proposed Method

Figure 1 sketches the specification of our gait based BCS using
a fuzzy commitment scheme [10]. In the enrollment phase,

gait signal of a user 𝑈 will be acquired and preprocessed
to reduce the influence of the acquisition environment.
Feature vectors are extracted in both time and frequency
domains and then binarized. After that, a reliable binary
feature vector 𝜔 is extracted based on determining reliable
components. Concurrently, a cryptographic key 𝑚, which is
generated randomly corresponding to each user, is encoded
to a codeword 𝑐 by using error correcting codes. The fuzzy
commitment scheme 𝐹 computes the hash value of 𝑚 and
a secured 𝛿 using a cryptographic hash algorithm ℎ and a
binding function, respectively. The helper data which are
used to extract reliable binary feature vectors and values of
ℎ(𝑚), 𝛿 are locally stored for later use in the authentication
phase.

In the authentication phase, the user supposed to be 𝑈
will provide a different gait sample. It is also preprocessed to
extract a feature vector and a reliable vector 𝜔󸀠 is extracted by
using helper data which is previously stored in the enrollment
phase. The decoding function 𝑓 computes the corrupted
codeword 𝑐

󸀠 via binding 𝜔
󸀠 with 𝛿 and then retrieves a

cryptographic key 𝑚󸀠 from 𝑐
󸀠 using a corresponding error

correcting code decoding algorithm. Finally, the hash value
of𝑚󸀠 will be matched with ℎ(𝑚) for authentication decision.

3.1. Gait Signal Preprocessing and Segmentation

3.1.1. Data Acquisition. A Google Nexus One smart phone
put inside front pocket is employed to collect user gait signal
(Figure 2).This discrete time signal is a sequence of combined
values of gravity acceleration, ground reaction force, and
inertial acceleration which are captured by a built-in 3-
dimensional accelerometer during walking. We present the
output of this accelerometer as 3-component vectors

𝐴 = [𝑎
𝑋
, 𝑎
𝑌
, 𝑎
𝑍
] , (1)

where 𝑎
𝑋
, 𝑎
𝑌
, 𝑎
𝑍
represent the magnitude of the acceleration

values acting on three directions, respectively.

3.1.2. Data Interpolation. As the accelerometer integrated in
mobile devices is power saving and designed to be simpler
than standalone sensors, its sampling rate is not stable and
entirely depends on mobile OS. The time interval between
two consecutive returned samples is not a constant. The sen-
sor only outputs value when the acceleration on 3 dimensions
has a significant change. The sampling rate of Google Nexus
One used in our study is instable and fluctuates around 27 ±
2Hz.Therefore, acquired signal is interpolated to 32Hz using
linear interpolation to ensure that the time interval between
two sample points will be fixed.

3.1.3. Noise Filtering. When accelerometer samples move-
ment data by user walking, some noises will inevitably be
collected. These could be yielded by idle orientation shifts
or bumps on the road during walking. Moreover, mobile
accelerometer produces numerous noises compared with
standalone sensors since its functionality is fully governed
by mobile OS layer. Hence, we adopt a multilevel wavelet
decomposition and reconstruction method, specifically the
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Figure 1: The overall architecture of our proposed gait based BCS using a fuzzy commitment scheme where ⊕ denotes the exclusive-OR
operator.
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Figure 2: (a) Google Nexus One phone with a built-in 3-axial accelerometer and (b) the position of device put inside the front trouser pocket.

Daubechies orthogonalwavelet (Db6) with level 2, to filter the
gait signal. In 1st level, original gait signal is decomposed into
two separate parts containing coarse and detail coefficients.
Such coarse coefficients acquired in the 1st level are then
used as input signal to be decomposed in the next level.
This process continues until the desired level is achieved. To
eliminate the impacts of noise, in each level, we assign detail
coefficients which are lower than a predefined threshold to
0. The noise-filtered signal is reconstructed conversely to
the decomposition process, wherein coarse coefficients will
associate with new detail coefficients starting from the lowest
level until the zero level is achieved.

Because walking is a cyclic activity, we segment a
sequence of gait signal after eliminating noise to separate
patterns which consist of consecutive gait cycles. A gait
cycle is defined as the time interval between two successive
occurrences of one of the repetitive events when walking.

We observed that whenever the human foot, which is on the
same side as the device, touches the ground, the acceleration
value in the vertical dimension signal changes obviously as
illustrated as red points in Figure 3. We determined these
points by calculating the autocorrelation coefficients 𝐴

𝑚
=

∑
𝑁−|𝑚|

𝑖=1
𝑥
𝑖
𝑥
𝑖+𝑚

on the vertical dimension signal and filtering
vivid peaks based on mean and standard deviation. Then
based on these points, we segment gait signals into separate
patterns, in which each pattern consists of 𝑛gc (𝑛gc = 4 in
our experiment) consecutive gait cycles of all 3 dimensions.
Finally, a feature vector is extracted from each pattern in both
time and frequency domains.

3.2. Feature Vector Extraction. Denote 𝑛gc,𝑁 as the number
of gait cycles (GC) and the number of acceleration values 𝑥
in a pattern, respectively. In each pattern, gait features are
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Figure 3: Gait cycle based segmentation on vertical dimension gait
signal.

extracted in both time and frequency domains as follows.

(a) Time Domain Features.

(i) Average maximum acceleration

avgmax = mean(max (GC
𝑖
))
𝑛gc
𝑖=1
. (2)

(ii) Average minimum acceleration

avgmin = mean(min (GC
𝑖
))
𝑛gc
𝑖=1
. (3)

(iii) Average absolute difference

avgabs dif =
𝑁−1

∑

𝑖=0

󵄨󵄨󵄨󵄨𝑥𝑖 − 𝑥
󵄨󵄨󵄨󵄨 . (4)

(iv) Root mean square

RMS = 1

𝑁

𝑁−1

∑

𝑖=0

𝑥
2

𝑖
. (5)

(v) 10-bin histogram distribution

hd = ⟨𝑛
𝑗
⟩
9

0
with 𝑛

𝑗
=

∑
𝑖=0

𝑥
𝑖

size (bin
𝑗
)

𝑗 (max−min)
10

≤ 𝑥
𝑖
∈ bin
𝑗
<
(𝑗 + 1) (max−min)

10
.

(6)

(vi) Standard deviation

𝜎 = √(
1

𝑁 − 1
)

𝑁−1

∑

𝑖=0

(𝑥
𝑖
− 𝑥). (7)

(vii) Waveform length

wl =
𝑁−1

∑

𝑖=1

󵄨󵄨󵄨󵄨𝑥𝑖+1 − 𝑥𝑖
󵄨󵄨󵄨󵄨 . (8)

(viii) Cadence period

𝑇cad =
∑
𝑛

𝑖
𝑡 (GC

𝑖
)

𝑛
, (9)

where 𝑡() is the time length of a gait cycle.

(b) Frequency Domain Features.

(i) First 40 FFT coefficients

fft = ⟨𝑋
𝑘
⟩ , 𝑋

𝑘
=

𝑁−1

∑

𝑖=0

𝑥
𝑛
𝑒
−𝑗2𝜋𝑘𝑖/𝑁

. (10)

(ii) First 40DCT coefficients

dct = ⟨𝑋
𝑘
⟩ ,

𝑋
𝑘
=
1

2
𝑥
0
+

𝑁−1

∑

𝑖=1

𝑥
𝑖
cos [ 𝜋

𝑁
𝑛(𝑘 +

1

2
)] .

(11)

Note that each feature in time and frequency domains
is extracted on 3 types of acceleration data of 𝑌, 𝑍,
𝑀-dimensions, where 𝑎

𝑀
= √𝑎

2

𝑋
+ 𝑎
2

𝑌
+ 𝑎
2

𝑍
, except for

the cadence period feature which is extracted based on
the timestamp of acquired acceleration values. Totally, we
obtain a real-valued feature vector of dimension of ((avgmax+
avgmin + avgabs dif +RMS+hd+𝜎+wl+fft+dct) × 3+𝑇cad) =
((1 + 1 + 1 + 1 + 10 + 1 + 1 + 40 + 40) × 3 + 1) = 289 for each
pattern.

3.3. Feature Vector Binarization. We adopt a quantization
method which is previously used in [13] for face template
binarization. Assume the number of users is denoted by𝑁

𝑢
.

The number of feature vectors extracted from each user is𝑀.
Let (𝑇⃗)

𝑖,𝑗
(𝑖 = 1 ⋅ ⋅ ⋅ 𝑁

𝑢
, 𝑗 = 1 ⋅ ⋅ ⋅𝑀) be the 𝑗th feature vector

of the user 𝑖; the mean over intraclass variability 𝜇⃗
𝑖
of the user

𝑖 is calculated as

𝜇⃗
𝑖
=

1

𝑀

𝑀

∑

𝑗=1

𝑇⃗
𝑗
. (12)

The mean over all feature vectors 𝜇⃗ in the enrollment phase
is calculated by

𝜇⃗ =
1

𝑁
𝑢

𝑁
𝑢

∑

𝑖=1

𝜇⃗
𝑖
. (13)
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The quantization method transforms 𝑡th component in
(𝑇⃗)
𝑖,𝑗
into {0, 1} by comparing 𝑡th component of 𝜇⃗

𝑖
with a spe-

cific threshold defined by corresponding tth component of 𝜇.
For each user 𝑖, the binary feature vector 𝜔

𝑗
is determined by

𝜔⃗
𝑖,𝑗
= ⟨𝜔⟩

𝑡
,

⟨𝜔⟩
𝑡
=
{

{

{

0 if (󳨀→𝜇
𝑙
)
𝑡

≤ (𝜇⃗)
𝑡

1 if (󳨀→𝜇
𝑙
)
𝑡

> (𝜇⃗)
𝑡
.

(14)

In the enrollment phase, we use enrollment feature vectors to
approximately estimate the value of 𝜇⃗. This 𝜇⃗ is stored as the
helper data and used as the specific threshold for binarizing
real-valued feature vectors in the authentication phase.

3.4. Reliable Binary Feature Extraction. As the authors
pointed out in [13], when using the quantization method to
transform real-valued vectors into the binary forms based on
statistical analysis as in the previous section, components in
𝜔⃗
𝑖
are significantly instable when using 󳨀→𝜇

𝑙
and 𝜇⃗ to determine

the output bit. For example, if the tth component of (󳨀→𝜇
𝑙
)
𝑡
is

close to (𝜇⃗)
𝑡
, the error probability for the next verificationwill

be higher.Therefore, it is necessary to extract only high robust
and reliable bits among 𝜔⃗

𝑖
. First, the variance 𝜎2 of each tth

component for each user 𝑖 is calculated by

𝜎
2

𝑖,𝑡
=

1

𝑀 − 1

𝑀

∑

𝑗=1

((𝑇⃗
𝑖,𝑗
)
𝑡
− (
󳨀→

𝜇
𝑙
)
𝑡

)

2

. (15)

Assume that the variability of components is modeled as
a Gaussian. Then, the standard error functions of tth bit of
the user 𝑖 are estimated as

rel val
𝑖
(𝑡) =

1

2
(1 + erf(

󵄨󵄨󵄨󵄨󵄨󵄨
(
󳨀→

𝜇
𝑙
)
𝑡

− (𝜇⃗)
𝑡

󵄨󵄨󵄨󵄨󵄨󵄨

√2𝜎
2

𝑖,𝑡

)). (16)

Indices of rel val
𝑖
(called rel idx

𝑖
) are also stored as the helper

data to extract reliable bits in authentication phase.

3.5. Key Binding Scheme. We adopt the BCH code [20] as
an error correcting code to overcome the natural variations
between biometric measurements. The advantage of BCH
code, compared with other codes, is that it can correct
single errors which could occur randomly as in our extracted
binary feature vectors. Moreover the decoding process of
BCH code is designed to be simple. Therefore, it requires less
computational capability and low-powered consumption so
that our system is more lightweight to be possibly deployed
on mobile devices. Let BCH

2
(𝑛
𝑐
, 𝑘, 𝑡) be a binary BCH code,

where 𝑛
𝑐
is the code length of bits, 𝑘 is the key length

of bits, and 𝑡 is the error correction capability. The binary
cryptographic key 𝑚 of length 𝑘 is generated randomly
corresponding to each user and then is encoded into the
codeword 𝑐 of length 𝑛

𝑐
using a BCH

2
(𝑛
𝑐
, 𝑘, 𝑡) encoding

scheme [20]. After that, we conceal this 𝑐 by binding it with
the extracted binary feature vector 𝜔 yielding a secured 𝛿

and then discard 𝜔. Since 𝜔, 𝑐 are two binary strings, an
exclusive-OR operator is adopted to bind these two strings
together.

In summary, we represent all of the necessary steps in
both enrollment and authentication phases in our system as
follows.

Enrollment Phase.

(i) Select a BCH
2
(𝑛
𝑐
, 𝑘, 𝑡) by predefining parameters

including the length 𝑛
𝑐
of the codeword and the

length 𝑘 of the secret key.
(ii) For each user 𝑖, real-valued feature vectors 𝑇

𝑖
∈ R𝑛𝑟

are extracted.
(iii) Determine a mean over all feature vectors 𝜇⃗ and

extract a binary vector 𝜔
𝑖
∈ {0, 1}

𝑛
𝑟 by using the

quantization scheme. Then, discard 𝑇
𝑖
.

(iv) Determine the reliable bit indices rel idx
𝑖
and reduce

the length of 𝜔
𝑖
to 𝑛
𝑐
by only selecting first 𝑛

𝑐
bits

among 𝑛
𝑟
based on rel idx

𝑖
.

(v) Store 𝜇⃗, rel idx
𝑖
as helper data for further use to

construct new feature vectors in the authentication
phase.

(vi) Randomly generate a binary secret key 𝑚
𝑖
with the

length of 𝑘.
(vii) Calculate the hash value of 𝑚

𝑖
by using a crypto-

graphic hash function ℎ (e.g., SHA) and store ℎ(𝑚
𝑖
).

(viii) Encode𝑚
𝑖
using a BCH

2
(𝑛
𝑐
, 𝑘, 𝑡) encoding scheme to

obtain a codeword 𝑐
𝑖
. Then, discard𝑚

𝑖
.

(ix) Bind 𝑐
𝑖
with 𝜔

𝑖
using exclusive-OR operator yielding

𝛿
𝑖
. Then, discard 𝜔

𝑖
and store 𝛿

𝑖
.

Authentication Phase.

(i) For each user 𝑖, feature vectors 𝑇󸀠
𝑖
∈ R𝑛𝑟are extracted

from a new biometric sample.
(ii) Extract binary feature vectors 𝜔󸀠

𝑖
with length of 𝑛

𝑐

with the help of 𝜇⃗ and rel idx
𝑖
. Then, discard 𝑇󸀠

𝑖
.

(iii) Bind 𝜔󸀠
𝑖
with the stored 𝛿

𝑖
using exclusive-OR opera-

tor to obtain a corrupted codeword 𝑐󸀠
𝑖
.

(iv) Decode 𝑐󸀠
𝑖
using a BCH decoding scheme to obtain a

key𝑚󸀠
𝑖
from 𝑐

󸀠

𝑖
.

(v) Calculate hash value ℎ(𝑚
󸀠

𝑖
) using the equivalent

cryptographic hash function (e.g., SHA) as in the
enrollment phase and then discard𝑚󸀠

𝑖
.

(vi) Match ℎ(𝑚
𝑖
) with ℎ(𝑚󸀠

𝑖
); if ℎ(𝑚

𝑖
) = ℎ(𝑚

󸀠

𝑖
), the user 𝑖

is authenticated. Otherwise, he will be rejected.

4. Experiments

4.1. Dataset Description. We evaluate our system on the data
collected from a built-in accelerometer in Google Nexus One
mobile phone. The sampling rate of the sensor is approxi-
mately 27Hz by setting to SENSOR DELAY FASTED mode



6 The Scientific World Journal

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

Normalized Euclidean distance

Po
pu

la
tio

n 
(%

)

Intraclass
Interclass

Figure 4: The Euclidean distance of extracted intra- and interclass
feature vectors.

on Android SDK. A total of 34 volunteers including 24 males
and 10 females with the average age from 24 to 28 participated
in our dataset construction. Each volunteer will perform
around 18 laps. To make the dataset more realistic, we collect
gait signals regardless of footgear and clothes. Volunteers
are asked to walk as naturally as possible and change their
footgear (e.g., sandal, shoe, or slipper) as well as clothes (e.g.,
short to long trouser, etc.) whenever they start a new lap. We
only have a constraint that when volunteers performwalking,
the mobile put in the pocket will not change its position and
orientation. To ensure that, we request volunteers to wear
trousers having a narrow pocket. Totally, we accumulated
the gait signals of 34 volunteers, each having at least 16 real-
valued feature vectors which could be extracted using the
method in Section 3.2. In our experiment, each volunteer will
have an equal number of the extracted feature vectors so that
we randomly select 16 vectors for users having more than 16.

4.2. Results. Figure 4 represents the Euclidean distance distri-
bution of extracted real-valued feature vectors. Note that the
operation of our BCS is likely to be similar to a threshold-
based classification, in which the threshold is likely to be
low according to an appropriate distance metric. We can
see that the mixing area between intraclass and interclass
real-valued feature vectors is large. Thus, applying threshold
based classification on these vectors would lead to the high
error rate in terms of FAR and FRR. Fortunately, when
such vectors are binarized by using the proposed method
in Section 3.3, the discrimination of binary feature vectors
between users is likely to be higher and the Hamming
distance of intraclass feature vectors is getting lower. Figure 5
illustrates the Hamming distance of binary feature vectors of
lengths of 127 and 255, respectively. These values of length
are selected to be appropriate with the design of the BCH
code which allows the length of codeword to be equal to

Table 1: Relative comparison of our proposed system and state-of-
the-art BCSs using different schemes of fuzzy commitment scheme
(FCS) and fuzzy extractor (FE).

Study Modality Scheme Key size
(bits)

FAR
(%)

FRR
(%)

[13] Face (CALTECH)
(FERET) FCS 58

58
≈0
≈0

3.5
35

[15] Signature FCS 29 6.95 6.95
[16] Voice FE 30–51 <10 <10
This
study Gait FCS 55

50
3.92
1.4

11.76
32.53

2
𝑀

− 1,𝑀 ∈ N,𝑀 > 3 and the maximum dimension
𝑑max of feature vector which could be extracted in this study
(𝑑max = 289). As already stated, the length of binary feature
vector must be equal to the length of BCH codeword for
possible binding using an Exclusive-OR operator. Hence, the
reliable bit extraction process in Section 3.4 will only select
a number of reliable components identical to the codeword
length. Looking into Figure 5, we can see that the Hamming
distance of intraclass feature vectors of length of 127 is lower
than in case of length of 255. We found that this is due to
the fact that the actual number of bits being highly reliable
according to (16) is just approximately half of the original
feature vector dimension. Hence, to obtain a binary feature
vector of length of 255, even low reliable bits are also selected.

Figure 6 illustrates the error rates of our proposed gait
based BCS using fuzzy commitment scheme corresponding
to two codeword lengths of 127 and 255, respectively. In both
cases, when the key length increaseswhich is equivalent to the
number of errors allowed in the codeword decreases, the FAR
is getting reduced to 0 and the FRR exponentially increases.
The best error rates of our proposed system are (1) in the
case of codeword length = 127; the achievements of FAR and
FRR are approximately 3.921% and 11.76%, respectively, in
terms of key length = 50 bits. (2) In the case of codeword
length = 255, we achieve the FAR ≈ 1.4% and the FRR ≈

32.53% in terms of the key length = 55 bits. These keys are
rather sufficiently long to be secured by a cryptographic hash
algorithm.The FRR of codeword length = 255 is significantly
higher than in case of codeword length = 127 because,
as already stated, selecting many low reliable bits makes
the binary feature vectors of length = 255 more dissimilar.
However, the achieved FAR is slightly better (1.4% compared
with 3.921%). In both cases, we can see that the FRRs are
rather high which could decrease the friendliness of the
system. However, user’s gait could be captured continuously
and implicitly by an accelerometer which does not make
the user annoyed as other biometric modalities (e.g., iris,
fingerprint, face, and signature). Therefore, this issue is not
so considerable.

Table 1 shows the performance of our proposed system
compared to some other state-of-the-art BCSs using different
behavioral modalities such as voice and signature. Note that
all these works use different approaches and the dataset used
is totally different so the comparison is just relative.Therefore,
through this study, we would merely like to illustrate that
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Figure 5: The Hamming distance of intra- and interclass binary vectors of lengths of 127 (a) and 255 (b).
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Figure 6: The error rates of FAR and FRR of the key binding result in terms of codeword lengths of 127 (a) and 255 (b).

human gait captured from inertial sensors could be utilized
to construct an effective BCS as other behavioral modalities.
Moreover due to the fact that we adopt a quantization scheme
similar to [13], we also compare our system with this face
based BCS. The authors achieved the key length of 58 bits,
the FAR of approximately 0%, and the FRR of approximately
3.5% and 35% corresponding to two different datasets of
CALTECH and FERET, respectively. We can see that face is
a physiological biometric which is more robust than human
gait, which is a behavioral modality. Hence, the performance
of their system in terms of key length, FAR, andFRR is slightly
better.

5. Conclusion

In this paper, we introduce an approach of gait based
biometric cryptosystem using fuzzy commitment scheme.
The results show a good potential to construct an effective
gait based BCS especially on mobile devices. The drawbacks
of our work are that the error rates in terms of FAR and
FRR are still rather high. We expect to achieve the FAR of
0% to make the system more secured. Hence, our further
work will focus on reducing the error rates of FAR and
FRR by constructing higher discriminant feature vectors
using global feature transformations as well as finding an
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optimal quantization scheme for binarization. Moreover, the
system security should be analyzed in depth to ensure that a
gait based biometric cryptosystem could fulfill the security
requirement in order to be deployed in reality. Finally,
validating the proposed system on a larger public dataset is
also our main further work.
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