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Abstract Authentication systems using gait captured from
inertial sensors have been recently developed to enhance the
limitation of existing mechanisms on mobile devices and
achieved promising results. However, most these systems
employed pattern recognition and machine learning tech-
niques in which biometric templates are stored insecurely,
which could leave critical security and user privacy issues.
Specifically, a compromise of original gait templates could
result in everlasting forfeiture. In this paper, twomain results
will be presented. Firstly, we propose a novel gait authenti-
cation system on mobile devices in which the security and
privacy are preserved by employing a fuzzy commitment
scheme. Instead of storing original gait templates for user ver-
ification like in conventional approaches, we verify the user
via a stored keywhich is biometrically encrypted by gait tem-
plates collected from a mobile accelerometer. Secondly, the
discriminability of sensor-based gait templates are investi-
gated to determine appropriate parameter values to construct
an effective gait-based biometric cryptosystem. The perfor-
mance of our proposed system is evaluated on the dataset
including gait signals of 34 volunteers.We achieved the zero-
FAR and the False Rejection Rate of approximately 16.18%
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corresponding to the key length, as well as the system secu-
rity level of 139bits. The results from our experiment show
that accelerometer-based gait could be further investigated
to construct a biometric cryptosystem, as effective as other
biometric traits such as iris, fingerprint, voice, and signature.

Keywords Fuzzy commitment scheme ·
Biometric cryptosystem · Gait recognition ·
Accelerometer · Error correcting

1 Introduction

Security techniques for identification, authorization, or
authentication are commonly basedonknowledge (e.g., pass-
words), token (e.g., ID cards), or biometrics (e.g., iris, fin-
gerprint, gait). Biometrics has been widely accepted as the
ultimate proof of identity via recognizing individuals based
on their behavioral or physiological characteristics [1]. It
has significant advantages considering end-user usage when
compared with the two methods of knowledge and token.
Users do not need to remember complicated passwords
or preserve their ID cards from stealing or counterfeiting.
Human gait has been considered as behavioral biometrics
for several decades [2] with implementations based on com-
puter vision [2] andwearable sensor technologies [3,4]. From
2010, implicit sensor-based gait recognitions are initially
proposed to support existing authentication mechanisms that
are obtrusive and inconvenient in frequent use on mobile
phones [5] and achieved promising results [6–9]. Gait-based
authentication has significant advantages in terms of user
friendliness and security aspects, compared with using other
biometric modalities [9,10]. Specifically, gait could be col-
lected implicitly without the user awareness. It is difficult
to mimic gait data [10], whereas a copy of a fingerprint or

123

Author's personal copy

http://crossmark.crossref.org/dialog/?doi=10.1007/s10207-015-0273-1&domain=pdf
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face could be easily obtained, and the system security fully
depends on the resistance of the sensor [2].

However, even though human gait is a new biometric trait
which is unique, irrevocable but it is less discriminant and
much more noisy than other modalities such as iris, finger-
print, face, etc. [1]. Hence, inertial sensor-based gait recog-
nition approaches focus on developing pattern recognition
and machine learning (PR-ML) algorithms to deal with high
variations between gait measurements [3,4,6–9]. Enrollment
gait templates or extracted features are stored in unconcealed
forms formatchingwith new templates to recognize individu-
als. However, such approaches could leave a critical vulnera-
bility, especially when they are deployed on portable devices.
When the device is stolen or malware infected, an attacker
could illegally access the repository to obtain or reconstruct
original gait templates. Applying cryptographic hash algo-
rithms to protect biometric templates as in password-based
systems is enormously impractical because they do not toler-
ate any single bit error. Loss of enrollment templates means
users are confronted with security and privacy issues. Since
biometrics is extremely difficult to change, the privacy leak
means an attacker could partly or fully determine the user’s
biometrics. From the viewpoint of system security, a compro-
mise of biometric templates results in everlasting forfeiture.
The attacker could utilize compromised templates to there-
after always illegally grant access to sensitive services.

In this paper, we propose a novel gait authentication by
using the biometric cryptosystem (BCS) approach to main-
tain the security and privacy of the system. Instead of storing
original gait templates for user verification like other systems,
we verify the user via a stored cryptographic key which is

biometrically encrypted by gait templates collected from a
mobile accelerometer before. These templates are employed
merely to encrypt/ or retrieve the key and then are always dis-
carded so that the security and privacy are maintained. More-
over, we employ a fuzzy commitment scheme [11] so that
the system has significant advantages in terms of small stor-
age space and low computational complexity, compared with
other gait authentication systems using PR-ML techniques
[6,7,9] when it is directly deployed on portable devices with
limited computational resources.

Our main contribution in this paper is threefold

– We propose a first approach of inertial sensor-based gait
authentication onmobile phone in which the security and
privacy are preserved. To the best of our knowledge, secu-
rity and privacy issues have not been taken into account
in smartphone-based gait authentication systems in the
literatures

– We analyze the discriminability of gait templates col-
lected from an inertial mobile sensor named accelerome-
ter. Based on the analyzed result, we suggest a method to
determine appropriate parameters to construct an effec-
tive gait-based biometric cryptosystem

– We analyze the security strength of our authentication
system resistant to different attacks.

The remainder of this paper is organized as follows. The
overviewof our systemarchitecture and proposedmethod are
described in detail in Sect. 2. Our experimental evaluations
and a security discussion are presented in Sect. 3. Section 4
describes some state-of-the-art studies related to our work.
Finally, a conclusion is presented in Sect. 5.
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Fig. 1 The overall architecture of our gait authentication system based on BCS using a fuzzy commitment scheme, where circled plus denotes the
exclusive-OR operation
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Gait authentication on mobile phone 551

Fig. 2 Illustrations of a human gait and b a gait cycle, c data collection device—the Google Nexus One mobile phone with an integrated three-
dimensional accelerometer, d the position of the phone (pocket) on user’s body during gait capture process

2 Gait-based biometric cryptosystem

Figure 1 sketches the specification of our gait-based biomet-
ric cryptosystem following the fuzzy commitment scheme
[11]. In this system, we used binary BCH code as the error
correcting code to handle the differences between biometric
measurements. In the enrollment phase, gait signals of a user
will be acquired and preprocessed to eliminate the influence
of the acquisition environment. Real-valued gait templates
are then extracted and binarized. Then, reliable binary tem-
plates w are extracted based on determining reliable compo-
nents. Concurrently, a cryptographic key m, which is gener-
ated randomly, is encoded to a codeword c by using the binary
BCHencoding scheme.The fuzzy commitment scheme com-
putes the hash code of m and a secured δ using a crypto-
graphic hash function h and a binding function, respectively.
Values of h(m) , δ along with helper data used for extracting
binary templates is stored for further authentication.

In the authentication phase, the user suggested to be
authentic will provide a fresh gait template. Such template
is also preprocessed, and a binary template w′ is extracted
by using helper data which is previously stored in the enroll-
ment phase. The decoding function computes the corrupted
codeword c′ by bindingw′ with δ. Then, a cryptographic key
m′ is retrieved from c′ by using the BCH decoding algorithm.
Finally, the hash code of m′ will be calculated and matched
with h(m) for an authentication decision. The milestones of
our system are described in detail the following sections.

2.1 Gait biometrics acquisition

Human gait is a pattern of movement of the limbs which
has been recognized as a distinguishable characteristic of the
individual (Fig. 2a). The gait recognition has been analyzed
for decades as a behavioral biometrics similar to a signa-
ture, voice, etc. [1]. In summary, the gait of an individual
could be examined using three common techniques including

Machine Vision Technology (MVT) [1], Floor Sensor Tech-
nology (FST) [4], and Wearable Sensor Technology (WST)
[3,6–9]. In this study, we use gait signals based on WST
since this is not only the latest approach but also appropri-
ate for personal usage. Gait data could be collected by sim-
ply attaching wearable sensors directly to the user’s body
(Fig. 2d). A Google Nexus One mobile phone placed inside
the pocket is employed to collect the gait signal (Fig. 2c, d).
This discrete time signal is a sequence of combined accel-
eration values of gravity acceleration, ground reaction force,
and inertial acceleration which are sensed by a built-in three-
dimensional (X,Y, Z) accelerometer during walking. Based
on the relationship betweengravity, acceleration, andmotion,
we present an acceleration sample returned by the accelerom-
eter as a three-component vector

a = (aX , aY , aZ ) ∈ R
1×3 (1)

where aX , aY , aZ represent the acceleration values of X , Y ,
Z dimensions, respectively. Figure 3 illustrates acquired gait
signals of a user.

2.2 Gait signal preprocessing and gait cycle extraction

Weutilize a part of the dataset in [7] for this study. The dataset
is filtered to be appropriate for our objective in this work (see
Sect. 3.1 for a detail description). In this dataset, raw gait
signals, which are acquired by a low-quality accelerometer,
are irregular due to the influence of environment acquisi-
tion. In particular, the sampling rate of the mobile sensor is
irregular and the raw signals contain a great deal of noise.
Hence, we apply preprocessing steps as in [7] to improve
the quality of the signals. These include linear interpolation
to obtain precise samples at the corrected sampling rate of
32Hz, a multi-level wavelet decomposition (Db6), in which
the detail coefficients of levels 1 and 2 are set to 0, is adopted
to eliminate noise.
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Fig. 3 A sequence of discrete gait samples sensed by a three-dimensional (X , Y , Z ) mobile accelerometer

Moreover, separate gait cycles are extracted by using a
gait cycle-1 based segmentation algorithm. In this section,
we only present the modification of the segmentation algo-
rithm and refer the reader to the original work proposed
in [7] for more detail. First, the algorithm determines the
beginning and ending signs of a gait cycle occurred in the
signal. Then, a separate gait cycle is extracted based on
such signs. These signs could occur in one of three dimen-
sions of signals which represent the vertical acceleration
during walking. This acceleration is represented by the Z
dimension signal in [7] since the authors utilized an addi-
tional magnetometer, along with an accelerometer to cal-
ibrate the original signal which is influenced by the dis-
orientation. We modified the algorithm to work on the Y
dimension signal without calibration since in this study, the
mobile phone is considered to be placed vertically inside the
user pocket as illustrated in Fig. 2d. As a result, the vertical
acceleration will be represented by the Y dimension of the
mobile, instead of its Z dimension. Figure 3 illustrates the
detected signs (red points) of gait cycles in the Y dimension
signal.

1 Gait cycle is defined as the time interval between two successive
occurrences of one of the repetitive events during walking, as illustrated
in Fig. 2b

2.3 Real-valued gait template extraction

Because the walking speed is always inconstancy, making
the number of samples in each gait cycle not identical, we
first normalize the length of each gait cycle to a fixed value
of ns . That means there are ns acceleration samples in each
gait cycle

Let Su = [
au1 . . . auv . . . auns

]�
be a normalized gait cycle

We form a gait template T by concatenating m consecutive
gait cycles.

T = [
S1 . . . Su . . . Sm

]� = [
a11 . . . auv . . . amns

]�

Let nt = mns . So,

T =

⎡

⎢⎢⎢⎢⎢
⎢
⎣

a1
...

ai
...

ant

⎤

⎥⎥⎥⎥⎥
⎥
⎦

=

⎡

⎢⎢⎢⎢⎢
⎢
⎣

(aX )1 (aY )1 (aZ )1
...

...
...

(aX )i (aY )i (aZ )i
...

...
...

(aX )nt (aY )nt (aZ )nt

⎤

⎥⎥⎥⎥⎥
⎥
⎦

∈ R
nt×3 (2)

An interpolation method is adopted to resample T to
an appropriate size for binding with a cryptographic key.
Let y be the timestamp of the acceleration sample gener-
ated by the accelerometer. There are nt pairs of accelera-
tion sample with corresponding timestamp {(ai , yi )}nti=1 =
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{(aX )i , (aY )i , (aZ )i , yi )}nti=1 in each T. We simultaneously
apply a spline interpolation to each component ((aX )i , yi ),
((aY )i , yi ), ((aZ )i , yi ) to simulate the continuity of T. The
spline interpolation f (y) such that f (yi ) = ai for 1 ≤ i ≤ nt
is f (y) = fi (y), yi ≤ y ≤ yi+1 in which fi (y) is a cubic
polynomial which is defined by

fi (y) = 1

6hi
zi+1(y − yi )

3 + 1

6hi
zi (yi+1 − y)3

+ ci (y − yi ) + di (yi+1 − y) (3)

where

hi = yi+1 − yi , ci = 1

hi
ai+1 − hi

6
zi+1,

di = 1

hi
ai − hi

6
zi

Note that z1 = znt = (0, 0, 0), and the remaining zi (i =
2 . . . nt − 1) are calculated by solving the tridiagonal linear
system of equations

hi−1zi−1 + 2(hi−1 + hi )zi + hizi+1 = 6(bi − bi−1) (4)

where

bi = 1

hi
(ai+1 − ai )

Assume that the size of the gait template T is n′ × 3 after
interpolation. We represent T in the form of single vector
of (1 × 3n′) by concatenating three dimensions of the gait
template following the X,Y, Z orders, respectively.

T =
⎡

⎢
⎣

(aX )1 (aY )1 (aZ )1
...

...
...

(aX )n′ (aY )n′ (aZ )n′

⎤

⎥
⎦ ⇒

τ = (
(aX )1, . . . , (aX )n′ , (aY )1, . . . , (aY )n′ , (aZ )1, . . . , (aZ )n′

)

= (τ1, . . . , τi , . . . , τnr ) ∈ R
1×nr (5)

where nr = 3n′.
Since components in τ are real values, we refer to τ as real-
valued templates. These templateswill then be used to extract
binary gait templates.

2.4 Gait template binarization and reliable bits extraction

We use a quantization scheme in [12] which was previously
applied for face template binarization. Assume the number
of users is denoted as N . The number of resampled real-
valued gait templates extracted from each user is M . Denote
τ

(u)
j (u = 1 . . . N , j = 1 . . . M) as the j th real-valued tem-

plate of length nr of the user u extracted by (5)

τ
(u)
j =

(
(τ

(u)
j )1, . . . , (τ

(u)
j )i , . . . , (τ

(u)
j )nr

)

The mean over intra-class variability of the user u is calcu-
lated as μ(u) = 1

M

∑M
j=1 τ

(u)
j and the mean over all gait tem-

plates μ is calculated by all templates of users in the enroll-
ment phase μ = 1

N

∑N
u=1 μ(u). The quantization scheme

transforms the i th component in τ
(u)
j to {0, 1} by comparing

the i th component of μ(u) with a specific threshold defined
by the corresponding i th component of μ. For each user u,
the binary template ω(u) is determined by

ω(u) =
(
ω

(u)
1 , . . . , ω

(u)
i , . . . , ω(u)

nr

)
(6)

with

ω
(u)
i =

{
0 if μ

(u)
i ≤ μi

1 if μ
(u)
i > μi

A reliable bit extraction method in [12] is also applied to
determine the index of reliable bits in ω(u). The reliability
r (u)
i of the component ωi

(u) in ω(u) is estimated based on
the Gaussian error function.

r (u)
i = 1

2

⎛

⎝1 + erf

⎛

⎝

∣∣
∣μ(u)

i − μi

∣∣
∣

√
2σ 2(u)

i

⎞

⎠

⎞

⎠ (7)

where σ 2(u)
i is the variance of the i th component of gait tem-

plate of the user u

σ 2(u)

i = 1

M − 1

M∑

j=1

(
(τ

(u)
j )i − μ

(u)
i

)2

Denote i(u) = (i (u)
1 , . . . , i (u)

j , . . . , i (u)
nr ), where r (u)

i j
> r (u)

i j+1

as the index vector of components following the descending
order of reliability values. First nc(nc < nr ) components of
i(u) will be used to extract the final binary template string w

of length nc.

w(u) = ω
(u)
i1

. . . ω
(u)
i j

. . . ω
(u)
inc

∈ �nc (8)

where � = {0, 1}.
The value ofnc is selected to be equal to the length of theBCH
codeword which will be presented in the following section.

2.5 Cryptographic key encoding and key-binding scheme

2.5.1 BCH encoding scheme

We adopt the error correcting codes to handle the natural
variations of gait biometrics. We use the BCH code dis-
covered independently by Bose and Ray-Chaudhuri and by
Hocquenghem [13]. Let � be a finite and non-empty set.
Basically, the BCH code is used to encode an informa-
tion message m = m0 . . .mk−1 ∈ �k into a codeword
c = c0 . . . cnc−1 ∈ �nc . We focus on using the binary BCH
code over the Galois field GF(2) in which code symbols are
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represented by bits of {0, 1}. Therefore, � = {0, 1}. For any
positive integer v (v ≥ 3) and t (t < 2v−1), there always
exists a binary BCH code with length nc and minimum dis-
tance dmin which satisfies

nc = 2v − 1 and dmin ≥ 2t + 1 (9)

(t is the maximum number of errors which could be cor-
rected). Letα be a primitive element in theGF(2v), andΦi (x)
is the minimal polynomial of αi over GF(2). The generator
polynomial g(x) of t-error correcting BCH code of length nc
is the least common multiple (LCM) of the minimal polyno-

mials of
{
αi

}2t
i=1.

g(x) = LCM (Φ1(x),Φ2(x), . . . , Φ2t (x)) (10)

The key length is determined by

k = nc − deg(g(x)) (11)

where deg(·) denotes the degree of the argument.
Denote BCH2(nc, k, t) as a binary BCH code, the encod-
ing process could be summarized as follows. Given a binary
cryptographic key m = m0 . . .mk−1 ∈ �k , we express m in
terms of message polynomial m(x)

m(x) = mk−1x
k−1 + mk−2x

k−2 + · · · + m0 (12)

Parameters includingnc = 2v−1 and t are pre-defined.Then,
we generate the irreducible primitive polynomial over GF(2)
with the degree of v, and the primitive element α of GF(2v).
The minimal polynomials for each element in GF(2v) are
determined, respectively. Then, the generator polynomial
g(x) is calculated according to (10).

Finally, m(x) is multiplied by g(x) yielding a codeword
c(x) = cn−1xn−1 + cn−2xn−2 + · · · + c0 , where c0 · · · cn−1

are coefficients of the codeword

c(x) = m(x)g(x) = xn−km(x) + r(x) (13)

where

r(x) = xn−km(x) mod g(x)

Given a codeword c, the key information could be
retrieved using BCH decoding algorithms which are des-
cribed clearly in [13].

2.5.2 Key-binding scheme

A binary cryptographic key m of length k is generated ran-
domly and encoded into the codeword c of length nc using
BCH2 (nc, k, t). Then, we bind the reliable binary gait tem-
plate string w extracted in the Sect. 2.4 with c yielding a

secured δ which is then kept in the storage. The method used
to bind these two binary strings is ⊕ operation. The hash
code h(m) of m is calculated and stored for further use for
user authentication. Helper data including i,μ extracted in
the Sect. 2.4 are also stored to extract reliable binary gait
template strings in the authentication phase. Note that in the
enrollment phase, after we obtain δ, i,μ and h(m), all other
data aswell as the original gait templatewill always be imme-
diately discarded to preserve the security and user privacy.

3 Experimental results

3.1 Dataset description

We used the dataset previously employed in [7] for evaluat-
ing this system. The original dataset consists of gait signals
of 38 users including 28males and 10 females captured by an
integrated accelerometer in Google Nexus One regardless of
installation errors. In this study,we do not consider the disori-
entation problem.Hence, we only select gait signals captured
when the phone is placed vertically inside the trouser pocket
with a fixed orientation, as illustrated in Fig. 2d, wherein the
Z -axis of the mobile is fixed. We accumulated the gait sig-
nals of 34 users, each having at least 16 gait templates. Each
user will have an equal number of extracted gait templates so
that we randomly select 16 templates for users having more
than 16 templates. According to Sect. 2.3, we create gait
templates, each consisting of m = 4 consecutive gait cycles.
Each separate gait cycle length is normalized to ns = 32.
Therefore, these templates will have an identical length of
3 × 4 × 32 = 384, where 3 is the number of dimensions
including X,Y, Z . Figure 4 shows the extracted real-valued
templates of three different users. Then, such templates are
resampled using spline interpolation. The 16 resampled tem-
plates of each user will be divided equally for training and
testing. In the training phase, eight random templates are
used to calculate helper data μ, i, and a binary template w is
extracted. In the testing phase, the remaining eight templates
are divided into two equal parts. Each part is employed to
extract a binary template w′. The performance evaluation is
based on the results achieved from these two parts.

3.2 The discriminability of intra- and inter-class gait
templates

Figure 5 illustrates the normalized Euclidean distance dis-
tribution of real-valued gait templates and the Hamming
distance distribution of the binary template based on reli-
able bits selection. The Euclidean distance of any two
real-valued templates τ1, τ2 of length nr is calculated as

dE (τ1,τ2) =
√∑nr

i=1(τ1i − τ2i )
2 and the Hamming dis-
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Fig. 4 An illustration of
extracted real-valued gait
templates of three different users
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Fig. 5 The distance distribution of real-valued gait templates and
binary gait templates

tance of any two binary templates w, w′ of length nc is
calculated as dH (w,w′) = 1

nc

∑nc
i=1

(
ωi ⊕ ω′

i
)
. Looking at

the cases of real-valued templates, the Euclidean distance
of intra- and inter-class templates is low and their distribu-
tion areas are considerably overlapped. Therefore, it is also
a challenge to recognize individuals based on real-valued
templates by using a proper threshold. After binarization,
the discriminability of reliable binary templates extracted
using the quantization scheme alongwith reliable bits extrac-
tion is enhanced, in comparison with real-valued templates.

As shown in Fig. 5, the Hamming distances of intra- and
inter-class reliable binary templates are more discriminant
and distribute mostly around 0.04 and 0.5, respectively. The
overlapped area reduces from 63.53%, in cases of real-
valued templates, to 7.3%. Note that, as the size of the over-
lapped area is reduced, the discriminability increases further.
Inter-class templates are more dissimilar so that determin-
ing an appropriate threshold to recognize individuals is more
straightforward to achieve an acceptable recognition rate.

3.3 The impact of resampling on the discriminability
of binary templates

For experimental analysis, we employ BCH codewords of
three different lengths, nc = 511, 255, and 127, respectively.
As already stated, in order to extract reliable binary templates
having equivalent length with the codeword, spline inter-
polation is necessarily adopted to resample gait templates
from the original length of n0 = 384 to an appropriate value
of nr . In this section, we analyze the influence of resam-
pling to the discriminability of binary templates, whereby
we determine the proper system parameter of nr to achieve
the optimal performance. Since the resampling is applied
to the real-valued templates, we first analyze the impact of
the resampling. Figure 6a shows that the similarity as well
as overlapped area of intra- and inter-class templates does
not change significantly when these templates are resam-
pled to various lengths. Therefore, it can be concluded that

123

Author's personal copy



556 T. Hoang et al.

63 723 1383 2043 2703 3363
0

0.2

0.4

0.6

0.8

1

n
r

N
or

m
al

iz
ed

 E
uc

lid
ea

n 
di

st
an

ce

Intra-class
Inter-class

(a)

1 1.9 2.8 3.7 4.6 5.5 6.4
0

0.2

0.4

0.6

0.8

1

p
n

r
 = pn

c

N
or

m
al

iz
ed

 H
am

m
in

g 
di

st
an

ce Intra-class
Inter-class
Threshold t

(b)

Fig. 6 a The Euclidean distance distribution of resampled real-valued templates τ of different lengths nr , b the Hamming distance distribution of
binary templates w of length nc = 511 extracted from τ with different lengths nr = pnc

resampling does not affect the discriminability of real-valued
templates. However, the discriminability of binary templates
varies proportionally according to the length of the resam-
pled real-valued templates. Figure 6b illustrates the trend of
Hamming distance distribution of binary templates of length
nc = 511, extracted from real-valued templates with differ-
ent lengths of nr = pnc, where p > 0. When p is increased,
the intra-class and inter-class binary gait templates become
more similar so that the discriminability will be decreased.
This is due to only nr reliable components out of nc com-
ponents in the original real-valued gait template which are
selected to form the final binary gait template. As described
in the Sect. 2.3, the term ‘reliability’ reflects the stability of
bits extracted according to the bit extraction method. Binary
templates containing many high reliable bits will result in
a low Hamming distance and vice versa, binary templates
containing many low reliable bits will result in a high Ham-
ming distance. So, we can see that if nr is too close to nc
(when p is small), which means that the pool size is small,
the extracted reliable binary template could include even low
reliable bits. When the pool size is getting increased (when
p is increased), the extracted reliable binary template could
include more highly reliable bits. As a result, the Hamming
distance between distinct pairs of binary templates both in
intra-class and inter-class cases will be decreased.

As BCH2 (nc, k, t) is adopted to handle the variability
of the gait templates, the normalized Hamming distance is
equivalent to t . A larger t coincides with a shorter key. For
example, if t is up to 121 bits 24% of nc = 511, then k = 10.
This length is insecure because an attacker can use brute
force to guess the key. Hence, we set t to be approximately
12 % of nc for k to be sufficiently long in all three cases of
nc = 511, 255, and 127. Note that the False Acceptance Rate
(FAR) and False Rejection Rate (FRR) reflect the security

Table 1 Selected values of length nr after interpolation and concatena-
tion of the real-valued templates corresponding to the requisite length
of the binary template

nc nr

127 321

255 579

511 1,221

and friendliness of the system, respectively. The security is
more important so that we would like to achieve the FAR
of 0% and the FRR is as low as possible. Consequently, we
analyze theHammingdistance distribution of intra- and inter-
class binary templates under the threshold of 12% to select
an appropriate value of nr . Looking to the area under the
threshold in the Fig. 6b, we can see that if nr is approximate
to nc, the population of intra-class templates will be small,
resulting in a high FRR. If nr is much larger than nc, the
population of inter-class templates will be slightly increased,
makingFAR > 0%.Hence,we select the optimal parameters
of p in range [2.2, 2.6] to ensure the concurrent achievement
of zeroFAR, low FRR, and long enough authentication key of
the system. Table 1 shows the specific values of nr according
to three different values of nc.

3.4 Results

Figures 7 and 8 illustrate the Hamming distance distribution
of extracted binary templates and the error rates of FAR and
FRRof our system according to different key lengths, respec-
tively. When the key length increases, the FAR decreases
exponentially to 0 and the FRR increases exponentially. As
already stated, the FAR of 0% could be achieved when
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Fig. 7 The Hamming distance distribution of binary templates of length nc. a nc = 127, b nc = 255, c nc = 511
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Fig. 8 The error rates of our system when binding binary templates with cryptographic keys of different lengths. a nc = 127, b nc = 255,
c nc = 511

Table 2 The error rates of our system according to three different code-
word lengths (nc) and key lengths (k)

nc (bit) k (bit) FAR (%) FRR (%)

511 121 0.08 16.18

511 139 0 16.18

511 148 0 17.65

255 63 0.27 19.12

255 71 0 20.59

255 79 0 22.59

127 36 0.18 14.71

127 43 0.13 14.71

127 50 0 14.71

The bold lines illustrate the best results

t ≤ 0.12nc. The best performances of our system corre-
sponding to three different lengths of the binary template are
considered at the zeroFAR and the lowest FRRs, as shown in
the Table 2. The overall error rates of our system is also rep-
resented by a receiver operating characteristic (ROC) curve
which illustrates the full relationship between the FAR and
the FRR (Fig. 9). It can be seen that the equal error rate (EER)
of the gait authentication system is approximately 3.5% if
we use a flexible threshold, instead of error correcting codes.
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Fig. 9 The ROC curves of our gait authentication system

Furthermore, we analyze thememory requirement of the sys-
tem. We consider the longest length nc = 511 of the code-
word as well as the binary template used in this study. The
helper data that need to be stored include μ, i, δ, h(m). To
generate binary templates of length nc = 511, the essential
length of real-valued templates is about 1,221. Therefore,
the length of μ is also 1,221. Each component in μ is a real
value which requires 8 bytes for representation so that μ
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requires 9768 bytes. i contains the index of 511 highest reli-
able components. The maximum index value is 1,221 so that
it requires 11 bits to represent an index. Therefore, whole i
requires 511× 11÷ 8 ≈ 703 bytes. δ is formed by XOR-ing
the codeword with the binary template, hence the length of
δ is 511bits ≈ 64 bytes. We use SHA-256 to calculate the
hash code of the cryptographic key so that the length of h(m)

is 256bits = 32 bytes. In total, our system requires approx-
imately 703 + 9768 + 64 + 32 = 10,567 bytes ≈ 11KB
to store all necessary data. Moreover, our system has a low
computational complexity. Most operations are performed
on bits (e.g., generate δ using ⊕ operation, calculate h(m)

using SHA-256, and encode and decode BCH codewords).
Hence, the system has significant advantages when deployed
on portable devices with limited computational resources.

3.5 Security discussion

In this section, we discuss the security of our system. First,
we assume that the attacker cannot access to the mobile stor-
age to obtain the stored data. The cryptographic keym in our
system is generated randomly with the length of k bits. Thus,
the attacker will attempt all possible m to be authenticated
by executing a brute force attack, which requires the attacker
to calculate 2k hash codes to match with the h(m) stored in
the storage. Therefore, the strength of our system in this situ-
ation is k bits. Particularly, k = 139, 71, and 51 correspond-
ing to nc of 511, 255, and 127, respectively, as shown in the
Table 2. Second, we assume that the attacker can access the
mobile storage and obtain stored data generated in the enroll-
ment phase including the helper data, the secured δ alongwith
the hash code h(m) of the cryptographic key m.

Once h(m) is lost, it is extremely difficult to recover
m from h(m). The attacker’s probability of success rate is
2−n , where n is the length of h(m) [22] (e.g., in SHA-256,
n = 256). This is considerably more expensive than exe-
cuting a brute force attack on m. Additionally, δ does not
reveal any information about the binary template w or m. To
retrieve w from δ, the attacker needs to guess the exact m
by trying to calculate 2k hash codes, as discussed above. To
retrievem from δ, the attacker could attempt to masquerade a
template w′ which is sufficiently close to w. The probability
of success depends on the uncertainty of binary templates.
Here, we measure the uncertainty of the binary template by
calculating its entropy. The entropy ε of the whole binary
template is calculated by summing the entropy of each bit in
the template together.

ε =
nc∑

i=1

H(qi ) (14)

The entropy of each bit bi is calculated by the binary
entropy function H(qi )=−(qi log2(qi )+(1−qi )log2(1−qi ))

where qi = Pr(bi = 1). According to nc = 511, 255, and
127, we achieved the corresponding entropy ε of approx-
imately 500.720, 250.456, and 124.508, respectively. We
used binary BCH codes which allows up to 12% incorrect
bits. Hence, the attacker could attempt to find ε bits within
the Hamming distance of κ bits, where κ = 0.12ε. The secu-
rity sT of our system against brute force attacks on the binary
template can be estimated using the sphere-packing bound
[13]

sT ≥ 2ε

∑κ
i=0 ( ε

κ )
≈ 2ε

( ε
κ )

(15)

According to (15), sT will be approximately 239, 121, and
61 bits corresponding three values of ε above. The achieved
values of k and sT are large enough as discussed in [11];
hence, the disclosure of δ is as difficult as finding collision in
SHA-1 or factoring RSA-1024. In summary, the strength S
of our system against brute force attacks when the portable
storage is compromised is between k and sT . Since k < sT
in all three different binary template lengths, so k ≤ S ≤ sT .
Therefore, the final security strength of our system is equiv-
alent to the length of the key. In particular, S = k = 139 (or
71 or 50) bits.

3.6 Relative comparison with other state-of-the-art
biometric cryptosystems

Table 3 shows the relative comparison of our system with
recent state-of-the-art BCSs using other physiological or
behavioral biometric factors such as face, iris, fingerprint,
voice, signature, and gait. Camera-based gait has been used
to generate strong keys by [21]. The authors achieved the
FAR and FRR of approximately 6 and 13.3%, respectively,
corresponding to the generated key length of 280 bits. They
evaluate their system on a gait dataset regardless of foot-
gear, which is relatively similar to our context. However, the
approach is different from ours so that the comparison is just
relative. First, a secure sketch scheme is used to generate a
random key, instead of binding with the key. Second, the gait
used in the system is captured from the camera, instead of
from the inertial sensors. To the best of our knowledge, no
BCS using inertial sensor-based gait biometrics is currently
available. There are limitations when using gait biometrics
captured by an inertial sensor. The mobile device is attached
on a specific position in the body during walking so that
the acquired gait signal only represents the movement of a
part of the body (e.g., users thigh in this work). Hopefully, it
can be seen that our proposed method can fulfill the current
security mechanism. It outperforms other behavioral biomet-
rics (signature, voice, and keystroke) in terms of key length
and relatively competitive with other physiological biomet-
rics in terms of zeroFAR and the security strength. The FRR
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Table 3 The performance of state-of-the-art BCSs using physiological and behavioral modalities with various schemes such as fuzzy commitment
scheme (FCS), fuzzy extractor (FE), secure sketch (SS), and password hardening (PH)

Study Modality Scheme Key length (bits) Security (bits) FAR (%) FRR (%)

Physiological modality

[14] Face FCS 75 75 1 3.62

[15] Fingerprint FCS 50 48 0 4.85

[16] Iris FE 192 – 4.42 9.67

[17] Iris FCS 140 44 0 0.47

Behavioral modality

[18] Signature FCS 29 – 6.95 6.95

[19] Voice FE 30–51 – <10 <10

[20] Voice PH 139 18–30 8.24±1.13 8.24 ± 1.13

[21] Gait (camera based) SS 60 60 10 9.3

280 280 6 13.3

This study Gait (wearable sensor based) FCS 139 139 0 16.18

71 71 0 20.59

50 50 0 14.71

of 16.18% is still rather high compared with other systems.
However, this is not a critical issue. Unlike other biomet-
ric modalities such as fingerprint, iris, or signature which
require the users to pay attention and performs a particular
action to collect the data, the human gait could be captured
continuously and implicitly without making user annoyed.
Moreover, we utilized two binary template samples, each
constructed from eight gait templates for testing. We found
that the authentication always has at least one success out of
two trials. Hence, if we apply a voting scheme to a sequence
of testing samples for final authentication decision, the FRR
will be reduced significantly.

4 Related works

State-of-the-art BCSwhichwere previously proposedmostly
focus on using physiological modalities such as iris [16,17],
face [12,14], and fingerprint [15]. In some other studies,
behavioral biometrics such as signature [18], voice [19,20]
have been used. Generally, BCSs could be classified into two
main subsystems including key-binding and key-generation
systems [23]. In key-binding systems, as our system, a ran-
dom key string is generated and is then bound with a bio-
metric template, yielding secured data. Such data are stored
for further utilization to retrieve the key in the authentication
phase. Several key-binding techniques are the fuzzy commit-
ment scheme [11] and fuzzy vault [24]. The key is revocable
so that the stored data is also revocable. A new data could be
recreated by binding another biometric template with a new
key which is generated randomly, if the old key is compro-
mised. Some key-binding-based systems have been imple-
mented using various biometric modalities such as iris [17],

face [12,14], fingerprint [15], hand written signature [18],
and voice [20] with promising results achieved. For exam-
ple, F. Hao et al. [17] proposed an iris-based BCS using the
fuzzy commitment scheme. They used 2048 bits of iris code
combinedwith the concatenated codes and achieved the FAR
and FRR of 0 and 0.47%, respectively; the key length and
the security of their system are 140 and 44 bits, respectively.
In contrast with key-binding systems, the key-generation
scheme, helper data, is created directly only from the biomet-
ric template. Such data will be associated with a presented
query which is sufficiently close to the original template to
retrieve either a unique key string or the original template.
Typical techniques of this scheme are the fuzzy extractor
[25] and secure sketches [26]. Particular applications of a
key-generated schemehave already been implemented on iris
[16], camera-based gait [21], and voice [19]. Besides, multi-
modal BCSs fusing several biometric modalities to enhance
the performance of uni-modal system, in terms of FAR, FRR,
key length, and the security strength to withstand masquer-
ade attacks, have been introduced [23,27,28]. For example,
A. Nagar et al. [28] combined fingerprint, iris, and face
together to construct a three-factor BCS. At the security
level of 53 bits equivalent to FAR ≈ 2−53, the Genuine
Acceptance Rate (GAR = 1 − FRR) of 99% was achieved,
compared with using an individually single modality as
GARfingerprint ≈ 2%, GARiris ≈ 91%, GARface ≈ 12%.

5 Conclusion

In this paper, we proposed a security and privacy preserved
gait authentication system on mobile phone by employing
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a fuzzy commitment scheme. The achieved performances
in terms of FAR, FRR, and the security level are relatively
promising for further investigation to construct a well secure
gait authentication on portable devices. However, since we
use a simple quantization scheme, the achieved error rate of
FRR is still rather high which could affect the friendliness of
the system. Hence, the next work will focus on enhancing the
performance, especially in term of the authentication rate of
the system by analyzing the discrimination of gait templates
and determining a more effective quantization scheme for
gait template transformation. Besides, multimodal biometric
cryptosystems that fuse some biometricmodalities have been
proposed recently to adapt with applications requiring high
security levels. Opportunely, portable devices are becoming
increasingly more equipped with many sensors which could
be utilized to capture various users’ biometric traits (e.g.,
face, fingerprint, signature, and voice). Therefore, investi-
gating on a multimodal biometric cryptosystem using exist-
ing available sensors on mobile phone will also be our main
further work.

Acknowledgments This research was supported by Basic Science
Research Program through the National Research Foundation of Korea
(NRF) funded by the Ministry of Education (2012R1A1A2007014).
This research was also supported by 2012-18-02TD VNU-HCMC
Project.

References

1. Jain, A.K., Flynn, P.J., Ross, A.A. (eds.): Handbook of Biometrics.
Springer, Berlin (2008). doi:10.1007/978-0-387-71041-9

2. Galbally, J.,Cappelli,R., Lumini,A.,Gonzalez-de-Rivera,G.,Mal-
toni, D., Fierrez, J., Ortega-Garcia, J., Maio, D.: An evaluation of
direct attacks using fake fingers generated from ISO templates. Pat-
tern Recognit. Lett. 31(8), 725–732 (2010). doi:10.1016/j.patrec.
2009.09.032

3. Ngo, T.T., Makihara, Y., Nagahara, H., Mukaigawa, Y., Yagi, Y.:
The largest inertial sensor-based gait database and performance
evaluation of gait-based personal authentication. Pattern Recognit.
47(1), 228–237 (2014). doi:10.1016/j.patcog.2013.06.028

4. Yun, J.: User identification using gait patterns on UbiFloorII. Sen-
sors 11(3), 2611–2639 (2011). doi:10.1007/11596448_141

5. Tam, L., Glassman, M., Vandenwauver, M.: The psychology of
password management: a tradeoff between security and conve-
nience. Behav. Inf. Technol. 29(3), 233–244 (2010). doi:10.1080/
01449290903121386

6. Frank, J., Mannor, S., Precup, D.: Activity and gait recognition
with time-delay embeddings. In: AAAI, pp 1581–1586 (2010)

7. Hoang, T., Choi, D., Vo, V., Nguyen, A., Nguyen, T.: A light-
weight gait authentication on mobile phone regardless of instal-
lation error. In: Security and Privacy Protection in Information
Processing Systems, pp. 83–101. Springer, Berlin (2013). doi:10.
1007/978-3-642-39218-4_7

8. Lu, H., Huang, J., Saha, T., Nachman, L.: Unobtrusive gait verifi-
cation for mobile phones. In: Proceedings of the 2014 ACM Inter-
national Symposium on Wearable Computers, pp. 91–98. ACM
(2014). doi:10.1145/2634317.2642868

9. Derawi, M., Bours, P.: Gait and activity recognition using com-
mercial phones. Comput. Secur. 39, 137–144 (2013). doi:10.1016/
j.cose.2013.07.004

10. Mjaaland, B. B., Bours, P., Gligoroski, D.: Walk the walk:
attacking gait biometrics by imitation. In: Information Security
(pp. 361–380). Springer, Berlin, Heidelberg (2011). doi:10.1007/
978-3-642-18178-8_31

11. Juels, A., Wattenberg, M.: A fuzzy commitment scheme. In: Pro-
ceedings of the 6th ACM Conference on Computer and Commu-
nications Security, pp. 28–36. ACM (1999). doi:10.1145/319709.
319714

12. Van Der Veen, M., Kevenaar, T., Schrijen, G. J., Akkermans, T. H.,
Zuo, F.: Face biometrics with renewable templates. In: Proceed-
ings of SPIE (vol. 6072, No. 1, p. 60720J) (2006). doi:10.1117/12.
643176

13. Morelos-Zaragoza, R.H.: The Art of Error Correcting Coding.
Wiley, New York (2006)

14. Feng, Y.C., Yuen, P.C.: Binary discriminant analysis for generating
binary face template. IEEE Trans. Inf. Forensics Secur. 7(2), 613–
624 (2012). doi:10.1109/TIFS.2011.2170422

15. Li, P., Yang, X., Qiao, H., Cao, K., Liu, E., Tian, J.: An effective
biometric cryptosystem combining fingerprints with error correc-
tion codes. Expert Syst. Appl. 39(7), 6562–6574 (2012). doi:10.
1016/j.eswa.2011.12.048

16. lvarez Mario, R., Hernndez lvarez, F., Hernndez Encinas, L.: A
crypto-biometric scheme based on iris-templateswith fuzzy extrac-
tors. Inf. Sci. 195, 91–102 (2012). doi:10.1016/j.ins.2012.01.042

17. Hao, F., Anderson, R., Daugman, J.: Combining crypto with bio-
metrics effectively. IEEETrans.Comput.55(9), 1081–1088 (2006).
doi:10.1109/TC.2006.138

18. Maiorana, E.: Biometric cryptosystem using function based on-
line signature recognition. Expert Syst. Appl. 37(4), 3454–3461
(2010). doi:10.1016/j.eswa.2009.10.043

19. Carrara, B., Adams, C.: You are the key: generating cryptographic
keys from voice biometrics. In: 2010 Eighth Annual International
Conference on Privacy Security and Trust (PST) (pp. 213–222).
IEEE (2010). doi:10.1109/PST.2010.5593251

20. Inthavisas, K., Lopresti, D.: Secure speech biometric templates for
user authentication. IET Biom. 1(1), 46–54 (2012). doi:10.1049/
iet-bmt.2011.0008

21. Argyropoulos, S., Tzovaras, D., Ioannidis, D., Strintzis, M.G.:
A channel coding approach for human authentication from gait
sequences. IEEETrans. Inf. Forensics Secur. 4(3), 428–440 (2009).
doi:10.1109/TIFS.2009.2025858

22. Menezes, A.J., Van Oorschot, P.C., Vanstone, S.A.: Handbook of
Applied Cryptography. CRC Press, Washington (2010)

23. Rathgeb,C.,Uhl,A.:A survey onbiometric cryptosystems and can-
celable biometrics. EURASIP J. Inf. Secur. 2011(1), 1–25 (2011).
doi:10.1186/1687-417X-2011-3

24. Juels, A., Sudan, M.: A fuzzy vault scheme. Des. Codes Crypt.
38(2), 237–257 (2006). doi:10.1007/s10623-005-6343-z

25. Dodis, Y., Reyzin, L., Smith, A.: Fuzzy extractors: how to generate
strong keys from biometrics and other noisy data. In: Advances in
Cryptology-Eurocrypt 2004, pp. 523–540. Springer, Berlin, Hei-
delberg (2004). doi:10.1007/978-3-540-24676-3_31

26. Li, Q., Sutcu, Y., Memon, N.: Secure sketch for biometric tem-
plates. In: Advances inCryptologyASIACRYPT2006, pp. 99–113.
Springer, Berlin, Heidelberg (2006). doi:10.1007/11935230_7

27. Chin, Y.J., Ong, T.S., Teoh, A.B.J., Goh, K.O.M.: Integrated bio-
metrics template protection technique based on fingerprint and
palmprint feature-level fusion. Inf. Fusion 18, 161–174 (2014).
doi:10.1016/j.inffus.2013.09.001

28. Nagar, A., Nandakumar, K., Jain, A.K.: Multibiometric cryptosys-
tems based on feature-level fusion. IEEE Trans. Inf. Forensics
Secur. 7(1), 255–268 (2012). doi:10.1109/TIFS.2011.2166545

123

Author's personal copy

http://dx.doi.org/10.1007/978-0-387-71041-9
http://dx.doi.org/10.1016/j.patrec.2009.09.032
http://dx.doi.org/10.1016/j.patrec.2009.09.032
http://dx.doi.org/10.1016/j.patcog.2013.06.028
http://dx.doi.org/10.1007/11596448_141
http://dx.doi.org/10.1080/01449290903121386
http://dx.doi.org/10.1080/01449290903121386
http://dx.doi.org/10.1007/978-3-642-39218-4_7
http://dx.doi.org/10.1007/978-3-642-39218-4_7
http://dx.doi.org/10.1145/2634317.2642868
http://dx.doi.org/10.1016/j.cose.2013.07.004
http://dx.doi.org/10.1016/j.cose.2013.07.004
http://dx.doi.org/10.1007/978-3-642-18178-8_31
http://dx.doi.org/10.1007/978-3-642-18178-8_31
http://dx.doi.org/10.1145/319709.319714
http://dx.doi.org/10.1145/319709.319714
http://dx.doi.org/10.1117/12.643176
http://dx.doi.org/10.1117/12.643176
http://dx.doi.org/10.1109/TIFS.2011.2170422
http://dx.doi.org/10.1016/j.eswa.2011.12.048
http://dx.doi.org/10.1016/j.eswa.2011.12.048
http://dx.doi.org/10.1016/j.ins.2012.01.042
http://dx.doi.org/10.1109/TC.2006.138
http://dx.doi.org/10.1016/j.eswa.2009.10.043
http://dx.doi.org/10.1109/PST.2010.5593251
http://dx.doi.org/10.1049/iet-bmt.2011.0008
http://dx.doi.org/10.1049/iet-bmt.2011.0008
http://dx.doi.org/10.1109/TIFS.2009.2025858
http://dx.doi.org/10.1186/1687-417X-2011-3
http://dx.doi.org/10.1007/s10623-005-6343-z
http://dx.doi.org/10.1007/978-3-540-24676-3_31
http://dx.doi.org/10.1007/11935230_7
http://dx.doi.org/10.1016/j.inffus.2013.09.001
http://dx.doi.org/10.1109/TIFS.2011.2166545

	Gait authentication on mobile phone using biometric cryptosystem and fuzzy commitment scheme
	Abstract 
	1 Introduction
	2 Gait-based biometric cryptosystem
	2.1 Gait biometrics acquisition
	2.2 Gait signal preprocessing and gait cycle extraction
	2.3 Real-valued gait template extraction
	2.4 Gait template binarization and reliable bits extraction
	2.5 Cryptographic key encoding and key-binding scheme
	2.5.1 BCH encoding scheme
	2.5.2 Key-binding scheme


	3 Experimental results
	3.1 Dataset description
	3.2 The discriminability of intra- and inter-class gait templates
	3.3 The impact of resampling on the discriminability  of binary templates
	3.4 Results
	3.5 Security discussion
	3.6 Relative comparison with other state-of-the-art biometric cryptosystems

	4 Related works
	5 Conclusion
	Acknowledgments
	References




