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ABSTRACT Inertial Measurement Units (IMUs)-based gait analysis is a promising and attractive approach
for user recognition. Recently, the adoption of deep learning techniques has gained significant performance
improvement. However, most existing studies focused on exploiting the spatial information of gait data
(using Convolutional Neural Network (CNN)) while the temporal part received little attention. In this study,
we propose a new multi-model Long Short-term Memory (LSTM) network for learning the gait temporal
features. First, we observe that LSTM is able to capture the pattern hidden inside the gait data sequences
that are out-of-synchronization. Thus, instead of using the gait cycle-based segment, our model accepts the
gait cycle-free segment (i.e., fixed-length window) as the input. By this, the classification task does not
depend on the gait cycle detection task, which usually suffers from noise and bias. Second, we propose a
new LSTM network architecture, in which, one LSTM is used for each gait data channel and a group of
consecutive signals is processed in each step. This strategy allows the network to effectively handle the long
input data sequence and achieve improved performance compared to existing LSTM-based gait models.
In addition, besides using the LSTM alone, we extend it by combining with a CNN model to construct a
hybrid network, which further improves the recognition performance. We evaluated our LSTM and hybrid
networks under different settings using the whuGAIT and OU-ISIR datasets. The experiments showed that
our LSTM network outperformed the existing LSTM networks, and its combination with CNN established
new state-of-the-art performance on both the verification and identification tasks.

INDEX TERMS Gait authentication, gait recognition, wearable sensor data, recurrent neural network, LSTM
network.

I. INTRODUCTION
Gait has been discovered to contain individual unique fea-
tures that could be used for user recognition. The prior gait
recognition researches relied on computer vision [1]–[5] or
floor sensor techniques [6]–[8]. Such approaches are appli-
cable for video surveillance or security access control in
a specific area (e.g., building entrance, airport checkpoint)
[9], [10]. The recent evolution of Micro Electro Mechani-
cal technique opens a new gait recognition method, which
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leverages the Inertial Measurement Units (IMUs) attached to
the human body to obtain the gait data [11]. Different from
the original methods, the IMUs-based approach is promising
for user identification/authentication on mobile devices (e.g.,
smartphone, smartwatch) which presents various positive fea-
tures as low-cost, mobility, unobtrusive, light-weight, ubiqui-
tous [9], [12]. Thus, IMUs-based gait recognition has become
an active research topic over the last decade.

Despite the merit of existing researches, IMUs-based
gait recognition is still a challenging and ongoing
topic [9], [13]. Gait is a special biometric modality that con-
tains both spatial and temporal information [14]. However,
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major efforts in recent studies focused on usingConvolutional
Neural Network (CNN) [15] to extract the spatial information
(e.g., [16]–[20]), while there was little attention for the
temporal part. Some latest studies adopted Long Short-term
Memory (LSTM) network [21] to capture the temporal infor-
mation from the gait data sequence and showed promising
results [19], [22]. However, we observe that there are two
limitations in these models. First, they used gait cycle-based
segment as the input, where gait cycle is the time interval
between two consecutive ground touching events of the same
foot [12]. However, gait cycle detection is also a challenging
task, which is noise-sensitive and device setting-dependent
(e.g., device position in user body, sensor model) [23]. In such
models, an incorrect gait cycle detection usually leads to a
false recognition decision. Second, they did not pay attention
to the shortcoming of LSTM in the sequence classification
task. Specifically, even though LSTM is able to capture the
correlation between data points across a sequence, the classi-
fication task with LSTM (i.e., many-to-one task) still suffers
from the long input sequence [24].

In this study, we propose a new multi-model LSTM net-
work for gait recognition which introduces two innovations
comparing to existing works [19], [22]. First, instead of using
gait cycle-based segments as the input, our model accepts
fixed-length segments, which are extracted independently
from the gait cycle. We observe that, unlike the handcrafted
methods, LSTM can automatically detect and extract the
hidden features from data segments that start at different
walking phases. Thus, for the LSTM model, there is no
need for the input segments to be well-aligned as using
the handcrafted methods. Second, we propose a new LSTM
network architecture which can effectively extract the mean-
ingful features from long input data sequence. Specifically,
instead of giving one signal data to each step of LSTM,
we input a group of continuous signals and process them
simultaneously (see Figure 2b). In this way, the number of
LSTM steps could be reduced without losing the gait infor-
mation. We show that, such architecture achieves improved
performance comparing to processing one signal at each
step.

In summary, the contributions of this study are:
• We propose a new LSTM network architecture for
IMUs-based gait recognition (Section III). Our LSTM
network uses free segment as the input to simplify the
segmentation step, and be independent from the gait
cycle detection task. Then, each gait data channel is pro-
ceeded separately to fully exploit the LSTM potential,
and a group of signals is input at each step to overcome
the difficulty of the long input sequence.

• We extend our network by combining with the state-of-
the-art CNN network [18] to construct a hybrid architec-
ture which achieves the improved performance compar-
ing to using only LSTM or CNN (Section IV-D).

• We further extend the proposed network to build the
verification model with triplet loss [25] and One-class
Support Vector Machine (OCSVM) [26]. We show that

our proposed LSTM network is also effective for the
verification task (Section IV-E).

• We conduct comprehensive experiments using two pub-
lic gait datasets (Section IV). The first dataset is
OU-ISIR - the largest population gait dataset [27]
which includes data of 744 users. The second dataset
is whuGAIT, which comprises data of 118 users col-
lected in the wild conditions [19]. We show that our
LSTM network outperforms existing LSTM networks.
In addition, its combination with CNN established new
state-of-the-art performance on both user verification
and identification tasks.

We organize the remaining parts of the paper as fol-
lows. We provide a review of the existing gait recognition
researches in Section II. Then, we describe in detail the
proposed LSTM model in Section III. The experiment and
evaluation are presented in Section IV. Finally, we summarize
this study by a conclusion in Section V.

II. RELATED WORK
In this section, we briefly review the gait recognition
researches. First, we summary different gait recognition
approaches in Section II-A. Then, we present in detail the use
of LSTM for IMU-based approach in Section II-B.

A. GAIT RECOGNITION
Based on the data acquiring method, gait recognition
researches could be categorized into 3 approaches as com-
puter vision (e.g., [1]–[5], [28], floor sensor (e.g., [6]–[8]),
and IMUs (e.g., [11]–[13], [19]). The computer vision and
floor sensor approacheswere the active researches in the early
time. In the computer vision model, a camera located on a
specific place (e.g., building’s entrance) is used to capture
a video of passing user. The acquired video is then used to
identify a user with some computer vision techniques. The
state-of-the-art researches on this approach were summarized
in [29], [30]. On the other hand, the floor sensor-based
approach uses the sensors placed on the floor to capture
the foot pressures when the user walking on. Comparing to
some common biometric traits (e.g., face, fingerprint, iris),
the computer vision- and floor sensor-based models could
capture the users’ data without their notice or interaction, thus
enable transparent identification [9]. So, these methods are
promising for the task of video surveillance or security access
control in a specific area.

Recently, the evolution of Micro Electro Mechanical
techniques allows the Inertial Measurement Units (e.g.,
accelerometer, gyroscope) to be embedded in common
mobile devices (e.g., smartphone, smartwatch). This technol-
ogy enables a new gait recognition approach, which uses the
mobile devices (with the embedded sensors inside) attached
to the human body to obtain the gait data [12]. This approach
is promising for user authentication on mobile devices, which
offers many favorable properties as low-cost, lightweight,
portability, ubiquitous, and transparency.
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The first IMUs-based gait recognition model was pro-
posed by Alisto et al. [11] in 2005. The gait data sequence
was captured by an accelerometer, and split into walking
step-based segments. The data in X and Z axes of each
segment were used to calculate the correlation between the
probe and gallery segments. The model achieved the FAR
of 6.4% and FRR of 5.4% for a dataset of 36 users. After
that, this field received more research attention, and a large
number of gait recognition models have been proposed in the
literature [9], [13], [16]–[20], [31].

Most prior IMUs-based gait recognition models used
handcrafted methods for feature extraction, which could
be summarized in [12]. The later researches adopted deep
learning techniques to automatically extract more discrim-
inative and stable features, which showed the improved
performance [17]–[20], [22]. In addition, some researches
improved the recognition performance by combining multi-
ples sensors [32], [33].

B. IMUs-BASED GAIT RECOGNITION WITH LSTM
Although Recurrent Neural Network (RNN) techniques (i.e.,
LSTM [21], GRU [34]) are powerful for sequential data,
only a few studies applied them for gait recognition [19],
[22]. The study [22] was the first one that adopted LSTM
to extract the hidden features from a gait cycle’s data (both
accelerometer and gyroscope) to be used for user authentica-
tion. A grid search was used to determine the best parameters
set. They evaluated their method on the OU-ISIR dataset
and achieved the EER of 7.55% when using 1 gait cycle
to verify the attempting user. In [19], the authors proposed
2 hybrid networks (i.e., the combination of CNN and LSTM),
one for user authentication and one for identification. The
user identification network consisted of two branches (one
CNN and one LSTM) processed in parallel. The features
extracted from two branches were then concatenated, and
used to identify the user by a fully connected (FC) network. In
the user authentication network, CNNwas used to transforms
the gait cycle’s data to some hidden features which were then
used as the input of LSTM.

Both of those studies require the input as gait cycle-based
segments, thus, they are strongly impacted by the adopted
gait cycle detection algorithm. In addition, in each step of
LSTM, data of all dimensions captured at a specific time
were used as the input. This fact causes the learning process
unstable when using a long input sequence. In this study,
we propose a new LSTM network architecture, which accepts
a gait cycle-free segment as the input, and can handle the long
input sequence effectively. The experiment results showed
that the performance of our proposed network surpassed the
existing LSTM models.

III. LSTM-BASED GAIT RECOGNITION FRAMEWORK
In this section, we present the proposed multi-model LSTM
network for IMU-based gait recognition. First, we describe in
section III-A the data preprocessing and segmentation to form

the network’s input. Then, we explain in detail the LSTM
network architecture in section III-B.

A. DATA PREPROCESSING AND SEGMENTATION
The input data for gait recognition are the sequences of
signals generated by the accelerometer and gyroscope sen-
sors. Each acceleration signal is recorded as a vector
of 3-dimensional a =

[
aX aY aZ

]
, where aX , aY and aZ

are the acceleration forces acting along the X , Y , and Z
axes, respectively. Similarly, each gyroscope signal g is a
3-dimensional vector g =

[
gX gY gZ

]
, where gX , gY , gZ

represent the rotation rates around the X , Y , and Z axes,
respectively. Due to the asynchrony between accelerometer
and gyroscope sensors, their signals may not be sampled
simultaneously. Therefore, we apply the spline interpolation
technique [35], to normalize the raw gyroscope sequence so
that each interpolated gyroscope signal is yielded simulta-
neously with the corresponding acceleration signal. Then,
the acceleration and gyroscope sequences are combined to
one data stream of 6-channel

S =
[
s1 s2 . . . sn

]
, (1)

where each element sj (1 ≤ j ≤ n) is a 6-dimensional vector

sj =
[
aXj aYj aZj gXj gYj gZj

]>
.

After that, S is split into fixed-length segments S(i) ∈
R6×Nc , each segment contains Nc consecutive signals, where
Nc is chosen so that each segment contains at least one gait
cycle. Specifically, let fw be the walking frequency of the user
(i.e., fw is the number of steps performed in one second). Let
fs be the signal sampling frequency of the sensors. Then, Nc
is chosen so that

Nc ≥ 2
fs
fw
. (2)

According to [36], people usually walk with the fw between
1.8 and 2 Hz, thus, Nc could be determined as

Nc = αfs, (3)

where α ≥ 1.0 is a user-selected parameter. Figure 1 illus-
trates an example of the accelerometer and gyroscope data
sequences captured with the sampling rate of 100 Hz, where
the red vertical lines denote the borders of the gait segments
split with α = 1. Note that, to increase the amount of training
data, two consecutive training segments S(i) and S(i+1) over-
lap each other θ%. For the testing data, there is no overlapping
portion between the segments.

From here, we denote S(i) as the matrix consisting data
of entire gait segment i. We mean s(i)j as the data vector of

channel j of gait segment i. And s(i)j,k represents the value of
signal k of channel j in segment i.

B. THE MULTI-MODEL LSTM NETWORK
Overall, the network accepts a gait segment S(i) as the input,
and computes an output vector

ŷ(i) =
[
ŷ(i)0 ŷ(i)1 . . . ŷ(i)Nu−1

]
, (4)

23828 VOLUME 9, 2021



L. Tran et al.: Multi-Model LSTM Network for Gait Recognition Using Window-Based Data Segment

FIGURE 1. An example of gait data signals captured with the sampling rate of 100 Hz. The red vertical lines denote the borders of gait segments (each
one has 100 gait signals) which are determined independently with the gait cycle.

where Nu is the number of users, and ŷ(i)u represents the
probability of segment S(i) belong to the user u, (0 ≤ u ≤
Nu−1). The architecture and computation of the network are
described as follows.

1) THE OVERALL ARCHITECTURE
Figure 2 depicts the overall network architecture which could
be divided into two parts:

• The feature extractor: It consists of 6 LSTMs, each
processes a gait data channel s(i)j and outputs a vec-

tor f(i)j of length H . Then, the output of all chan-
nels are concatenated to form a unique vector f(i) =[
f(i)1 f(i)2 f(i)3 f(i)4 f(i)5 f(i)6

]
which is then used as the input of

the classifier. The detailed structure and processing of
each LSTM network are described in Section III-B2.

• The classifier: It is a fully connected (FC) layer which
predicts the user identity given the feature vector f(i).
Specifically, for a model of Nu users, the FC layer
maps the feature vector f(i) to the output vector ŷ(i) of
length Nu. Each element of ŷ(i) is computed from all
elements of f(i), followed by the log softmax function
as the activator. To avoid overfitting and improve the
generalization, we employ dropout with the rate of 0.5
in this layer. Specifically, in the training phase, 50%
nodes of f(i) are dropped along with their connections
to prevent co-adapting too much and help the remaining
network parameters to be adjusted more effective.

2) THE LSTM STRUCTURE
Figure 2b depicts the detailed processing of each LSTM
network, which accepts a gait channel s(i)j as the input, and

outputs a feature vector f(i)j of length H (1 ≤ j ≤ 6).

The LSTM network processes the input sequence through
several steps, each step has L layers. In this study, instead
of inputting one signal for each step as the existing meth-
ods [19], [22], we use a group of K (Nc | K ) consecutive
signals. Specifically, given a gait channel sequence s(i)j of

length Nc, the LSTM processes s(i)j in T = Nc
K steps. In the

step t (1 ≤ t ≤ T ), each layer l (1 ≤ l ≤ L) of the LSTM cell
gets the input x(l)t and the outputs of step t−1 (i.e., the hidden
state h(l)t−1, the cell state c

(l)
t−1) to compute the new hidden state

h(l)t and the cell state c(l)t . The new cell state c(l)t is updated as
follows:

f(l)t = σ (w
(l)
if x

(l)
t + b(l)if + w(l)

hf h
(l)
t−1 + b(l)hf ),

i(l)t = σ (w
(l)
ii x

(l)
t + b(l)ii + w(l)

hi h
(l)
t−1 + b(l)hi ),

g(l)t = tanh(w(l)
ig x

(l)
t + b(l)ig + w(l)

hgh
(l)
t−1 + b(l)hg),

c(l)t = f(l)t ◦ c
(l)
t−1 + i(l)t ◦ g

(l)
t , (5)

where ◦ is the Hamadard product, and σ is a logistic sigmoid
function. Then, the hidden state h(l)t is determined from the
cell state c(l)t

o(l)t = σ (w
(l)
io x

(l)
t + b(l)io + w(l)

hoh
(l)
t−1 + b(l)ho),

h(l)t = o(l)t ◦ tanh(c(l)t ). (6)

In equations (5) and (6), the weight matrices (i.e., w(l)
if , w

(l)
hf ,

w(l)
ii ,w

(l)
hi ,w

(l)
ig ,w

(l)
hg,w

(l)
io ,w

(l)
ho) and the bias (i.e., b

(l)
if , b

(l)
hf , b

(l)
ii ,

b(l)hi , b
(l)
ig , b

(l)
hg, b

(l)
io , b

(l)
ho) are the parameters of layer l that need

to be updated through the learning process. Here, when t = 1,
the cell state c(l)0 and h(l)0 are initialized randomly. The input
data x(l)t is determined by

x(l)t =

{[
s(i)j, K (t−1)+1 . . . s

(i)
j, Kt

]
if l = 1,

h(l−1)t otherwise.
(7)
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FIGURE 2. The multi-model LSTM gait recognition network. (a) The overall architecture of our gait recognition model consists of 6 LSTMs, each one
extracts features from a gait data channel separately. (b) The detailed processing of each LSTM network.

That is, in the first layer of each step t , K consecutive ele-
ments of the gait segments are used as the input vector; in the
l th layer (i.e., 1 < l ≤ L), the output vector of the lower layer
(i.e., h(l−1)t ) is input.

In case of multi-layer LSTM (i.e., L ≥ 2), we adopt
dropout 50% for all the layers excepting the first one, to pre-
vent the training model from overfitting [37]. Specifically,
in the training phase, at each layer l > 1), 50% elements
(selected randomly) of the hidden features h(l−1)t are zeroed
out before inputting to layer l. Note that, in the testing phase,
dropout is not applied, that means, all elements of the hidden
features extracted from lower layer are input to the upper
layer.

In this study, the LSTM network is used for the classifica-
tion task, thus, it follows the many-to-one architecture. That
means, the hidden state of the last layer outputted in the last
step is used as the output of the network, i.e., f(i)j = h(L)T .

3) TRAINING AND OPTIMIZATION
We initialize the network’s parameters using the Kaiming
He’s method [38], then train them with the gradient descent
algorithm to adjust them iteratively. Let L be the set of train-
ing gait segments andNl be the size of this set (i.e., Nl = |L|).
In the training phase, each segment S(i) ∈ L is labeled with
its user owner’s identity u(i), (0 ≤ u(i) ≤ Nu − 1). The
network is trained repeatedly through a number of epochs.
In each epoch, the training set L is randomly shuffled and
divided into several batches B, each batch B has B segments
(B is usually referred as batch size). With each batch B,
the network computes the set of output vectors Y , where
each vector ŷ(i) ∈ Y gives a prediction for the label of gait
segment S(i) ∈ B. The negative log-likelihood (NLL) loss is

then computed over the batch B as follows

NLL(B) = −
1
B

∑
ŷ(i)∈Y

log(ŷ(i)
u(i)

), (8)

where ŷ(i)
u(i)

is the element u(i) of the output vector ŷ(i). Then,
NLL(B) is used to update network parameters following the
back propagation procedure [39]. When all the batches have
been used to train the network, one training epoch is com-
pleted, then, the process is repeated with a new epoch until it
meets a stopping condition (see Section IV-A).

IV. EXPERIMENTS
In this section, we present the experiment and evaluation
for the proposed method. First, we describe the datasets and
experimental settings. Then, we report the results analyzed
under different parameters and network architectures (i.e.,
pure LSTM, the combination of LSTM and CNN). Finally,
we provide a comparison between our study and the existing
methods.

A. DATASET AND SETTING
Our experiment was conducted using PyTorch 1.6.0 frame-
work running on Python 3.6.9 and Ubuntu 18.04.3. The used
computer was equipped with the Intel(R) Xeon(R) Gold 6126
(2.6 GHz, 8 cores) processor, 16 GB of RAM memory, and
the NVIDIA Tesla V100 16 GB GPU. The proposed model
was evaluated on two public datasets as the OU-ISIR [27],
and whuGAIT datasets [19]. The experiment procedure for
each dataset is performed as follows. All the source code and
trained models were published in GitHub1 to facilitate the
future research.

1https://github.com/halam189/Gait_Recognition_LSTM.git
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1) THE OU-ISIR DATASET
OU-ISIR is considered as the largest population IMUs-based
gait dataset that has been published so far. This dataset is orga-
nized into 2 subsets. The first one contains data of 744 users,
collected by one IMU placed in the middle of the user’s
back waist. The second subset consists of data of 408 users,
acquired by 3 IMUs placed on the left, right and center of
back waist. In this study, we used the first subset as we aimed
to evaluate the proposed method on a large number of users.

For each user in the dataset, we divided his/her data into
2 parts, to be used for training and testing, respectively. Then,
each sequence in each part was split into a set of gait segments
with α = 1.0, thus, each segment has Nc = 100 gait
signals. For the training sequences, two consecutive segments
overlapped each other θ = 97%. There was no overlapping
between the testing segments. The segments extracted from
the training sequence were used to form the training set L.
Some segments from the testing sequence (i.e., 20% of each
user) formed the validating set V , and the remaining formed
the testing set T .

The network was trained by the Stochastic Gradient
Descent algorithm with the learning rate r = 0.15, momen-
tum m = 0.9, and batch size B = 64. The set V was used
for early stopping when training the network. Specifically,
when completing a training epoch, the loss NLL(V) over the
validation set V was computed. If NLL(V) did not decrease
during 15 epochs, we terminated the training process. The set
T was used for evaluating the trained network’s performance.
Specifically, each segment s(i) in T was input to the trained
network to get the predicted label û(i). Let C be the number of
correct classifying cases (i.e., û(i) = u(i)). Then, the accuracy
ACC was identified as:

ACC =
100× C
|T |

. (9)

2) THE whuGAIT DATASET
WhuGAIT is a dataset of 118 users collected in the wild
conditions, conducted byWuhan University. This dataset was
organized into 8 subsets, each one was used for a specific
experiment in the original paper. In this study, we used the
subset #3, which comprises of training and testing sets, each
one has data of all 118 users. In the original work, the gait data
sequences were split into fixed-length segments, in which,
each segment consists of gait signals of 2.68 seconds (i.e.,
128 signals), and 2 consecutive segments overlap 1.28 sec-
onds (i.e., 64 signals). Thus, our first step is to concatenate
the given segments according to the order of acquisition time,
then remove the overlap to reform the raw gait sequence.

After that, the experimental procedure was similar to the
OU-ISIR dataset, excepting some differences in the data
segmentation and dataset dividing as follows. In the segmen-
tation step, we split the reformed sequence into gait segments
so that each one contained 80 gait signals (i.e., α = 1.6). The
value of α used in this dataset was higher than in OU-ISIR
because the sampling rate for collecting OU-ISIR dataset
was 100 Hz, higher than in whuGAIT dataset (50 Hz). Due

TABLE 1. The identification accuracy (%) of the LSTM network when
using optimal parameters.

to the low sampling rate, some information may be missed
in each gait cycle, thus, to complement the missing parts,
we increased the value of α. To facilitate the comparison,
we used the training/testing set divided from the original
study for training/testing our networks. The training segments
(extracted from the training set) also overlapped each other
97%, and the segments for testing had no overlapping portion.
For each user in the dataset, we randomly selected 1500 seg-
ments extracted from the training set, to be used for training
the model. The remaining segments were used to form the
validating set V , to terminate the training process. All the
segments extracted from the testing set were used to evaluate
the model’s accuracy.

B. RESULT
The optimal identification accuracy experienced in each
dataset and the used parameters are presented in Table 1. The
model achieved the best accuracy of 78.92% for the OU-ISIR
dataset, and 93.14% for the whuGAIT dataset. For both of the
datasets, the optimal setting of LSTM layer number (i.e., L)
was 2, and the optimal hidden size was 40. However, for the
input group size, different settings were used (i.e., K = 10
for OU-ISIR dataset, and K = 4 for whuGAIT dataset). The
reason for this inconsistency is the difference of sampling
rates fs used in each dataset (i.e., 100 Hz in OU-ISIR, 50 Hz
in whuGAIT dataset). Specifically, with a higher sampling
rate, a larger number of signals will be acquired in a certain
time period, thus the input gait data sequence gets longer. So,
the value of K needs to be increased accordingly to adjust the
number of steps T to an optimal value.

C. DISCUSSION
In this section, we analyze the impacts of the input data (i.e.,
gait cycle-based or fixed-length segment) and the important
parameters as the input group size K , the hidden size H , and
the number of LSTM layer L to the recognition accuracy.

1) SEGMENTATION METHOD
We utilized the datasets #1 and #3 in the study [19] to analyze
the impact of segmentationmethod (i.e.,fixed-length window
or gait cycle). We experimented our LSTMmodel under three
cases:
• (i) Cycle-based segmentation (overlapping 50%): The
model was trained with the dataset #1. This dataset
contained gait segments of 118 users, in which, each
segment had 118 signals of two continuous gait cycles
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FIGURE 3. The identification accuracy under different input group sizes and number of LSTM layers when the hidden size is 40.

such that two consecutive segments overlapped one
cycle.

• (ii) Window-based segmentation (overlapping 50%):
We used the dataset #3 for training the model. This
dataset also contained gait segments of 118 users, how-
ever, each segment consisted of 128 gait signals that
were collected in 2.56 seconds (i.e., approximate to the
time of two gait cycles), and two continuous segments
overlapped each other 50% (i.e., 64 signals).

• (iii) Window-based segmentation (overlapping 97%):
We also used the dataset #3 for this case. How-
ever, we created a larger training dataset by increasing
the overlapping between two continuous segments as
θ = 97% (see Section IV-A2).

Under three cases of data segmentation, we used the same
setting for the model as input group size K = 4, hidden size
H = 40 and LSTM network of 2-layer.

Table 2 summarizes the identification accuracy of 3 cases
above. We could see that under the same amount of train-
ing data, the cycle-based segmentation achieved the accu-
racy of 92.19%, which is a little higher comparing to
window-based segmentation. However, with the fixed length
window segmentation, it is easy to increase the training
dataset (by increasing the overlapping portion), and the
model could reach higher accuracy comparing to cycle-based
segmentation. Note that, this experiment assumed a good
gait cycle detection algorithm (i.e., having manual checking
after a heuristic algorithm) [19]. Without manual checking,
the number of incorrect gait cycles may increase, and the
overall accuracy could reduce. Thus, with the fixed-length
window segmentation, themodel could reach higher accuracy
by creating larger amount of training data, and does not
depend on the gait cycle detection algorithm.

2) THE INPUT GROUP SIZE
In Figures 3, we present the recognition performance under
different settings of the input group size (K ) and the number

TABLE 2. The identification accuracy (%) of the LSTM network under
different settings of data segmentation, measured on whuGAIT dataset.

of LSTM layers (L). It could be seen that, selecting the right
value for input group size K is important for the model to
achieve optimal performance. From the figure, increasing K
(from 1) will improve the recognition performance. How-
ever, upon reaching a certain value, continuing to increase K
will decrease the accuracy. For example, with the OU-ISIR
dataset and using the 1-layer LSTM model, the recognition
performance (ACC) was 71.85% when K was 2. Increasing
the input group size K to 5 and 10 gradually improved
the accuracy to 76.02% and 76.99%, respectively. However,
when K reached 20 and 25, the accuracy was degraded to
73.96 and 73.72%, respectively. With the whuGAIT dataset,
the 1-layer LSTM achieved the accuracy of 85.85% when
the input group size K was 1. When increasing K to 2 and
4, the accuracy was also improved to 91.69% and 92.16%;
then, gradually degraded to 91.23% and 90.14% when K
was increased to 8 and 16, respectively. Similar observations
were obtained when using other settings for LSTM layer
(see Figure 3).

The reasons behind that are as follows. When K increases,
the number of LSTM steps for processing entire input
sequence are decreased (see Section III-B2). Thus, it is easier
for the LSTM network to handle the entire gait sequence
when increasing K (i.e., LSTM usually has difficulty when
dealing with a long input sequence in the classification
task [24]). However, LSTM is powerful for learning the
hidden information between inputs at different steps, and
unable to extract the correlation hidden inside elements of
the input vector at each step. Thus, when K is increased,
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FIGURE 4. The identification accuracy under different settings of output size and LSTM layers when using optimal setting for input group size.

the input vector at each step becomes larger, a higher amount
of correlation information will be missed and the recognition
performance is degraded.

Note that, in Figure 3a, when K = 1, the network could
not converge when training (i.e., the recognition accuracywas
below 10 %). Thus, we do not present the case of K = 1 in
this figure.

3) THE OUTPUT SIZE
The output vector f(i)j contains the features extracted from

a gait channel j of sequence i. In general, if the size of f(i)j
(i.e., H ) is too small, the model could suffer from under-
fitting which results to low accuracy. However, too large
H would make the feature space too big for the classi-
fier to effectively handle due to the curse of dimensionality
problem [40].

Figures 4 display the model accuracy under different out-
put sizes H when using the optimal input group size (i.e.,
K = 10 for OU-ISIR dataset, K = 4 for whuGAIT
dataset). For the OU-ISIR dataset and 2-layer LSTM model,
when using a small output size as 10, the model had low
recognition accuracy as 65.23%. Then, increasing the output
size to 20 and 40 improved the performance to 77.17% and
79.04%, respectively. Upon reaching the optimal value as 40,
continuing increasing the output size caused overfitting and
degraded the performance (e.g., 78.92% with H = 50, and
77.08% with H = 60). Similarly, for the whuGAIT dataset
and using 2-layer LSTM, the model had low recognition
accuracy as 87.2% when using a small output size as 10.
When increasing the output size to 20 and 40, the recog-
nition accuracy was also improved to 92.59% and 93.53%,
respectively. However, when the output size was beyond
40, the performance gradually decreased (e.g., 93.08% with
H = 50, 93.09% with H = 60). Similar observations
could be obtained when using different settings for number of
LSTM layers.

4) THE NUMBER OF LSTM LAYERS
The number of LSTM layers L defines the number of param-
eters used in the LSTM model. A higher value of L, a larger
number of parameters. So, in general, a small value of L leads
to a simple and underfitting LSTM model which is inflexible
and has low recognition performance. On the other hand, too
large value of L results in an overfitting model, which loses
the generalization and also has low recognition performance.
Typically, this parameter is determined based on how much
training data is available.

As we could see in the Figures 3 and 4, the model achieved
optimal performance in two datasets when using 2-layer
LSTM network. However, with the OU-ISIR dataset, the
4-layer model has the lowest performance comparing to other
settings of L. The reason for this is the data scarcity in the
OU-ISIR dataset (i.e., each user just walked 2 sessions of 9
m). Thus, with this dataset, there is not enough data for
training, and it is easy for the model to be overfitting when
using a network with large number of parameters as 4-layer
LSTM.

On the other hand, with the whuGAIT dataset, even though
the 4-layer model did not achieve the optimal performance,
it still had better performance comparing to 1-layer LSTM.
The reason for this is, each user in the whuGAIT dataset
has much more training data comparing to the user in the
OU-ISIR dataset. Thus, the model is easy to be suffered from
underfitting than overfitting.

D. THE COMBINATION OF CNN AND LSTM
LSTM is strong in learning the temporal relations hidden
inside sequential data. On the other hand, CNN is great for
extracting the spatial information. The fusion of CNN and
LSTM is potential to be superior as it can provide a richer
set of features than using one technique. In this section,
we present an extended model which combines our LSTM
network and an existing CNN network [18]. We show that,
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FIGURE 5. The hybrid deep network architecture which combines our
LSTM model and the CNN model [18].

the hybrid model outperforms the existing networks and
establishes new state-of-the-art performance.

1) NETWORK STRUCTURE AND OPTIMIZATION
Figure 5 depicts the architecture of the hybrid network
which combines LSTM and CNN. The network architec-
ture could be divided into two parts as feature extrac-
tor and classifier. The feature extractor comprises of the
LSTM network (described in Section III) and CNN net-
work (described in [18]) processing in parallel to indepen-
dently extract the spatial and temporal features from the
gait segment. The classifier is a fully connected layer which
maps the feature vector extracted by LSTM and CNN to
the output vector of size Nu, where Nu is the number of
users.

The hybrid model was trained in two steps. In the first
step, the original LSTM network (Figure 2) and CNN net-
work [18] were trained separately. Then, we discarded the
last fully connected layer (i.e., the classifier) in each network,
and used the remaining parts to form the feature extrac-
tor of the hybrid network. In the second step, we trained
the classifier of the hybrid network. Specifically, entire
hybrid network processed the data to obtain the output,
which was used to update the parameters of the classi-
fier iteratively using the Stochastic Gradient Descent algo-
rithm. Note that, in this step, the parameters of the feature
extractor (i.e., the LSTM and CNN networks) were kept
unchanged.

2) RESULT
Table 3 summarizes the identification performance of the
hybrid network comparing to using CNN or LSTM alone,
measured on the OU-ISIR and whuGAIT datasets. On
both datasets, the hybrid model showed improved perfor-
mance comparing to using only CNN or LSTM. Specifi-
cally, on the OU-ISIR dataset, the hybrid model achieved the

TABLE 3. The identification accuracy (%) of the hybrid network
comparing to LSTM and CNN alone.

identification accuracy of 89.79% while it was 78.92% for
LSTM and 84.91% for CNN. Similarly, for the whuGAIT
dataset, the accuracy was 94.15% with the hybrid network
while it was 93.14% with LSTM and 93.64% with CNN.

E. VERIFICATION
We extend the proposed models and analyze them on the
verification task. In this task, themodel will solve the problem
of binary classification which validates whether a given gait
segment belongs to a claimed identity or not. In addition,
unlike the user identification task, verification requires the
model to handle the data of unknown users (i.e., the users that
do not participate on the training phase). For that requirement,
we combine the proposed network with One-class Support
Vector Machine (OCSVM) [26] to construct the verification
model as follows.

1) VERIFICATION MODEL
The overall architecture of verification model could be
divided into two parts as the feature extractor and the
classifier. The feature extractor is one of the above deep
networks (i.e., LSTM (section III), CNN [18], or hybrid
(section IV-D)) which accepts a gait segment and extracts
a feature vector to be used for classification. However, for
this task, instead of using NLL loss, we use triplet loss for
training the deep networks [25], thus, they could extract a
unique feature vector for each user. Then, OCSVM is used
as the classifier, which accepts the extracted feature vector
as the input and decides whether it belongs to the genuine
user or impostor. With OCSVM, the model could be trained
using only data of the enrolled user, yet, could effectively
handle the unknown impostor. Specifically, OCSVM gets a
set of feature vectors f(i) from the enrolled user u to learn a
boundary g(.) that covers all f(i) and separates them from the
other users. This is performed by mapping the feature vectors
f(i) to a suitable space corresponding to the kernel, then a
hyperplane g(.) for separating them from the origin with
maximum margin is determined. Given a feature vectors f(i),
the user is classified as genuine if g(f(i)) ≥ 0, and impostor
otherwise.

2) EXPERIMENT PROCEDURE
Figure 6 depicts the experiment procedure for the verification
task, which could be divided into 3 steps as training the deep
network, training the OCSVM, and testing. A given dataset
was divided into 2 subsets as training and testing. In the first
step, entire training set was used for training the deep network
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FIGURE 6. The verification model which uses the trained network as the
feature extractor and OCSVM as the classifier.

TABLE 4. The Equal Error Rate (EER) of the verification models, evaluated
on OU-ISIR and whuGAIT datasets.

with triplet loss. After that, the trained network was used as
a feature extractor. For each user u in the testing set, half
amount of data of u was used as the gallery data, to train
the OCSVM boundary (i.e, the OCSVM training step). All
remaining data in the testing set was used for evaluating the
accuracy of the trained boundary (i.e., testing step). Note
that, steps 2 and 3 were repeated for all users in the testing
set.

For the whuGAIT dataset, we used all the data of 98 users
as the training set, and data of 20 users as the testing set.
With each user u in the testing users, 50% data were used to
construct the OCSVM boundary g(.), and all remaining data
were used for evaluating the performance.

The OU-ISIR dataset has been used to evaluate in many
studies [16], [18], [22], [41]–[43]. However, each study used
different setting for their experiment. Thus, we evaluated
our method with two settings, to facilitate the comparison to
existing works. For the first setting, similar to the study [22],
we used data of 520 users as the training set, for training
the deep network, and the remaining 224 users for con-
structing the OCSVM and evaluating the verification per-
formance. For the second setting, each user in the dataset
participated in both the training and evaluating, similar to the
studies [18], [41]–[43]. Specifically, 50% data of 744 users
were used to train the deep network. Then, the remaining
data were used to construct the OCSVM model and eval-
uate the performance. In addition, in the second setting,
we combined the decisions of all segments to obtain the
decision examined in entire sequence with majority voting.
Specifically, if more than half number of segments extracted
from the sequence were classified as positive, this sequence
was decided belonging to the genuine user, otherwise, an
impostor.

The verification performance was evaluated by the False
Rejection Rate (FRR) and False Acceptance Rate (FAR).
Specifically, let NG be the number of attempts performed by
the enrolled user, and FG be the times being classified as an
impostor. The FRR was determined by

FRR =
FG × 100

NG
. (10)

The FAR was calculated by

FAR =
FI × 100

NI
, (11)

where NI is the number of attempts performed by the
impostors, and FI is the times being classified as enrolled
user.

To provide a flexible trade-off between FAR and FRR for
OCSVM, we introduced a threshold φ to separate the genuine
and impostor. Specifically, for a specific φ, the user is clas-
sified as genuine if g(f(i)) ≥ φ, and impostor if g(f(i)) < φ.
Beside FAR and FRR, we additionally determined the Equal
Error Rate (EER), which is the average of FAR and FRR
when they are equal or approximate to each other, obtained
by adjusting φ.

3) VERIFICATION RESULT
Figures 7 display the verification performance (i.e., FAR and
FRR) measured on OU-ISIR and whuGAIT datasets. The
EERs under different settings are summarized in Table 4,
where the column ‘‘Setting’’ provides the number of users
participating in the training and testing phases. In different
settings, although LSTM has lower performance than CNN,
the combination of LSTM and CNN achieves an improved
performance comparing to using CNN alone. Specifically,
on the OU-ISIR dataset, with the first setting (i.e., 520 users
for training, 224 users for testing), the EERs of LSTM and
CNN were 6.63% and 3.74%, and their combination could
reduce the EER to 3.36%. Similarly, with the second set-
ting (i.e., all users participated in both training and testing),
the combination of LSTM and CNN achieved the EER of
2.78%, while it was 5.35% and 3.05% when using only
LSTM or CNN. This efficiency could be additionally con-
firmed on the whuGAIT dataset. When using CNN alone,
the EER was 5.07%, however, with the combination of
LSTM, the EERwas reduced to 4.52%. Those results confirm
that, LSTM could extract from the gait segment some features
that could not be obtained by using CNN. And those features
could be used to improve the recognition performance in both
the tasks of user identification and verification.

F. COMPARISON WITH EXISTING WORKS
In this section, we provide a comparison between our method
and existing studies. Note that, as each study was experi-
mented in a different setting, it is hard to make a fair compar-
ison. We consider the performance measured on two settings
as segment-based and session-based. For the segment-based,
the performance was determined from the result of single
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FIGURE 7. The verification performance (FAR, FRR) of different model architectures.

TABLE 5. The comparison on identification performance (ACC) between our study and existing researches.

segment. On the other hand, the session-based result was
combined from the results of all its segments.

1) IDENTIFICATION
Table 5 provides a comparison on identification perfor-
mance between our method and existing studies which
used whuGAIT and OU-ISIR datasets as the benchmark.
WhuGAIT dataset was conducted by the authors in [19],
and used to evaluate their deep learning-based gait recog-
nition models. In that study, their LSTM model achieved
the identification accuracy of 91.88% while the combination
of LSTM and CNN reached 93.52%. In this dataset, our
LSTM model showed the improved performance when it can
achieve the accuracy of 93.14% and its combination with
CNN reaches 94.15%. OU-ISIR dataset was first introduced

in [27]. In that study, the authors used it to confirm the
performance of existing methods published so far, and the
best accuracy as 70.2% was reported when measured in
each segment. After that, it has been used to evaluate the
recognition performance in many studies [18]–[20], [44]. On
this dataset, our LSTM network achieved higher identifica-
tion performance comparing to the methods used in stud-
ies [19], [20], [27]. In addition, our proposed hybrid network
over-performed the method used in [44]. The CNN network
in [18] achieved a high accuracy as 94.8% when using entire
session for each test trial. Under the same setting, our LSTM
network achieved an approximate result as 94.23%. Further-
more, the combination of our LSTM network and their CNN
showed a clear improvement, which reached the accuracy
of 98.67%.
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TABLE 6. The comparison on verification performance (EER) between our study and existing methods.

2) VERIFICATION
We summarized in Table 6 the EER of our verificationmodels
comparing to existing researches. On the whuGAIT dataset,
our LSTM model showed higher verification accuracy com-
paring to the LSTM network used in [19]. And our hybrid
network also outperformed their hybrid architecture.

On the OU-ISIR dataset, our methods achieved improved
performance under different experimental settings comparing
to existing studies. Specifically, for the first setting (i.e.,
520 users for training, and the remaining 224 users for evalu-
ation), our LSTM network achieved the EER of 6.63% while
it was 7.55% in [22]. The authors in study [16] conducted
a different experiment setting comparing to other studies.
Data of a subset of users were used for training, and entire
users participated on the validation phase. They reported the
EER of 10.43%, however, it is hard to make a performance
comparison here. For all remaining studies (i.e.,, [18], [20],
[27], [41]–[43]), all users in the dataset participated on both
training and testing phase, however, different portion of data
was used in each study. Among them, the authors in [20], [27],
[43] used a same amount of data for each testing portion,
which was 1 gait cycle, and the EER of 13.5%, 6% and
4.49%were reported, respectively. On this setting, our LSTM
network achieved the EER of 5.35%, and the hybrid network
reached 2.78%. When using entire walking session for each
testing trial, the EER of our LSTM network 2.65%, which
was higher than the method in [41]. Comparing to the CNN
network in [18], which achieved the EER of 1.1% measured

on entire session, our LSTM model had lower performance.
However, the combination of our network and that CNN
model showed better performance, which achieved the EER
of 0.94%.

V. CONCLUSION
In this study, we proposed a novel multi-model LSTM net-
work for IMUs-based gait recognition. First, unlike the exist-
ing LSTM-based gait approaches, ourmodel accepts the input
as fixed-length segments, which are independent from the
phase of gait cycle. This alteration allows the recognition
model to be released from the gait cycle detection task which
is sensitive to noise and bias. Second, we designed a new
LSTM network architecture, in which, one LSTM is used
for each data channel, and a group of consecutive signals
is processed at each step to effectively handle the gait data
sequence. Furthermore, we extended the LSTM network to
construct a hybrid network by combining with CNN. The
user verification model was also constructed by extending the
existing network with OCSVM. The evaluation on OU-ISIR
andwhuGAIT datasets showed that ourmethod outperformed
the existing LSTM gait models. Although LSTM still could
not reach the equal performancewith CNN, it can improve the
CNN model and achieve new state-of-the-art performance in
both the tasks of identification and verification.
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