
XXX, VOL. XX, XX 1

AVET: A Novel Transform Function To Improve
Cancellable Biometrics Security

Thao M. Dang, Thuc D. Nguyen, Thang Hoang, Hyunseok Kim, Andrew Beng Jin Teoh, and Deokjai Choi

Abstract—Similarity preserving is a key ingredient of can-
cellable biometric scheme design. The notion ensures the accu-
racy performance of the biometric systems can be preserved after
the cancellable biometric technique is applied. Random Projec-
tion is among the most commonly adopted method in cancellable
biometric schemes. However, it is reversible subject to certain
conditions, which disrupts the template irreversibility criterion.
This invites vulnerabilities for random projection-based schemes.
In this paper, we propose a novel transform function, namely
Absolute Value Equations Transform (AVET), which non-linearly
projects feature vectors to another domain. The transformed
templates hold two main merits ensuring the user’s privacy,
and maintaining the system’s performance simultaneously. First,
by relying on the hardness of the Absolute Value Equations
problem, we guarantee that AVET satisfies irreversibility. Second,
by using Johnson–Lindenstrauss lemma and the inverse triangle
inequality, we prove that the proposed approach has the sim-
ilarity preserving property. Notably, rigorous theoretical proofs
and empirical experiments are provided. The efficacy of AVET is
comprehensively evaluated on both physiological and behavioral
biometrics including face, ear, fingerprint, and gait. With uni-
modal approach, we achieve competitive performances compared
to related algorithms on eight public datasets. Regarding bimodal
mode, the AVET surpasses the state-of-the-art technique on all
three observed datasets. To the best of our knowledge, this is the
first study that attempts to develop a secure transformation to
augment the role of Random Projection in the existing cancellable
biometric schemes.

Index Terms—Cancelablle biometrics, similarity preserving, ir-
reversible transformation, Absolute Value Equations Transform.
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Fig. 1: The proposed AVET has both security and similarity
preserving properties. The given toy dataset is irreversibly
projected into another domain via AVET, i.e., t1 7→ t′1. The
input data is drastically changed while the overall topology
of the data points remains relatively stable, with d1 (d2, d3,
d4) is Euclidean distance from t1 to t2 (t1 → i, t1 → s,
t1 → f ) and d′1 (d′2, d′3, d′4) is Euclidean distance from t′1 to
t′2 (t′1 → i′, t′1 → s′, t′1 → f ′).

B IOMETRICS, human biological or behavioral traits, are
appropriate for recognizing or verifying the identity of

an individual due to its uniqueness. The main advantage of
using biometrics over passwords or user-specific tokens is its
convenience which enables people to get rid of remember-
ing complicated random strings or carrying physical devices.
While the connection between passwords/tokens and its holder
is vague, the question “who I am” can be answered perfectly
with biometrics, yielding irrefutable evidence in proof of
liability. This leads to the sharp growth of biometrics-based
solutions for defense, forensics, banking, and unlocking smart
devices. However, biometric data is permanently associated
with the user and cannot be modified; thus when a biometric
template is disclosed, it would be lost eternally. Therefore,
biometric template protection (BTP) schemes must meet the
following criteria [1]:

• Revocability: The protected templates could be revoked
at any time whenever required.

• Unlinkability: There is no correlation between protected
templates (i.e., not cross-matching).

• Irreversibility: It should be computationally infeasible
to trace back the original biometric templates from the
corresponding compromised information.

• Performance preservation: The performance of the bio-
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metric systems should not be degraded when applying
BTP methods.

To address the concern of BTP, the notion of Cancellable
Biometrics (CB) was first introduced by Ratha et al. [2].
In general, CB refers to the irreversible transform that can
generate a protected biometric template. While CB design
mainly focuses on the security protection of the biometric
templates, decent similarity preserving is a necessity to meet
the performance preservation criterion. Random Projection
(RP) is one of the most popular similarity preserving notions
for CB design. The similarity preservation nature of the RP is
guaranteed by the Johnson–Lindenstrauss (JL) lemma [36].
The RP is often found in data retrieval problems such as
locality sensitive hashing (LSH) [3] and for privacy enhance-
ment [4]. Random Projection has been implemented in many
CB schemes for various biometrics modalities such as face
[8], fingerprint [7], iris [12], palmprint [13], signature [10],
gait [14], finger vein [15], speech [16], and electrocardiogram
(ECG) [17] since early 2000s until today. Even though those
CB schemes have distinct designs and extensions according
to different biometric traits, the role of RP is entrenched due
to its simplicity and effectiveness. However, many researches
point out that RP is insecure on its own where the attackers
can recover the original user’s template partially [11] and
particularly vulnerable to some dedicated attacks such as pre-
image attack [18] and known-sample attack [19].

To remedy the limitations of RP, we propose a generic
solution dubbed Absolute Value Equations Transform (AVET),
which can be adapted to diverse biometric modalities yet
satisfies revocability, unlinkability, and irreversibility criteria.
Besides that, AVET also preserves the manifold structure
among data points, before and after the transformation, within
a certain small error with respect to the Euclidean metric.
To intuitively show the promising performance of AVET, we
demonstrate the method over a 4-dimensional toy dataset with
1000 data instances and illustrate the 2-dimensional trans-
formed results in Fig. 1. Every character of “TIFS” is made by
250 data points. After applying AVET, despite distortions, the
shape of the transformed characters “T”, “I”, “F”, “S” remain
recognizable. This suggests the distance relationship between
data points is largely kept, thus can approximately preserve
the accuracy performance after transformation.

For the upcoming parts of this paper, the existing similarity
preserving methods are reviewed in Section II, as well as our
motivation and contributions of this research are highlighted.
We briefly present the background knowledge and introduce
the proposed transformation function in Section III. Next, the
experimental validations are performed in Section IV. Further,
security, privacy and revocability analysis are described in
Section V. Finally, Section VI is conclusions.

II. LITERATURE REVIEW

A. Related work

In this section, we focus on reviewing state-of-the-art
generic cancellable biometrics schemes. As mentioned above,
all cancellable biometric schemes are to leverage certain sim-
ilarity preserving notion to ensure performance preservation

criterion can be satisfied. Most of the schemes can be sub-
sumed under two broad categories: 1) non Random Projection
and 2) Random Projection based. By generic, we refer to CB
schemes that can be adapted to various biometric modalities
such as face, iris, fingerprint, etc. For convenience of reference,
we summarize all the key notations in Table I.

TABLE I: Notations.

Notation Description
dist(·) Calculating distance function
avet(·) The proposed AVET transform function
ϕ(·) Projection function
sgn(·) Sign function
δ, ε,∆ Non-negative real number
a / ai Vector / Element i-th of vector a
a / A Scalar, number / Matrix
A / |A|c Set / Cardinality of set A
| · | Absolute value number / vector
|| · || Euclidean distance
a ≃ε b Euclidean distance between vectors a and b

is smaller than the real number ε
i.i.d. Independent and identically distributed
[n] For a number n ∈ N∗, [n] denotes {1, ..., n}
⌊·⌋ Floor operation
a||b Concatenation of vector a and vector b

1) Generic cancellable biometrics techniques: We first
present several relevant CB schemes which do not follow
the RP notion. Morphing technique was the first CB scheme
proposed by [2] [5] for fingerprint and face. The authors distort
the biometric data with an user-specific morphing function that
enables revocability. However, Dabbah et al. [20] revealed
that the original data can be easily recovered due to the
high correlation between the morphed data and its original
counterpart.

Bloom filter notion is adapted for biometric template pro-
tection purpose and it is applied to iris [21], face [22],
and fingerprint [23]. Bloom filter was first applied for iris
template protection by Rathgeb et al. [21]. Bloom filter-based
transforms have been claimed to achieve irreversibility due
to the many-to-one adopted mapping. However, Hermans et
al. [24] argued that Bloom filter violates the unlinkability
requirement by providing a simple attack scheme that was
able to distinguish whether two templates are extracted from
the identical biometric sample or not. In addition, Bringer et al.
[25] claimed that there exists a leakage in the Bloom filter-
based schemes [21] when l is small (i.e., l = {16, 32}) by
exploiting the Hamming distance between the reconstructed
IrisCode and the compromised one.

Recently, Kaur and Khanna put forward Random Distance
Method (RDM) [26] which is suitable for both unimodal
and bimodal biometric systems. If the distance vector D and
all of helper data are compromised, recovering the original
features is feasible [26, Section V-C]. Later, Kaur and Khanna
presented Random Slope Method (RSM) [27] that follows the
outline in [26] but computes slope values between feature and
synthetic points instead. Noticeably, the similarity preserving
property of both RDM and RSM is established theoretically
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under a strong assumption than that of the RP-based methods.
This issue will be discussed more in Section IV.

2) Random Projection-based techniques: In CB, the RP
notion is widely adopted due to its simplicity and effectiveness
in distance-related preserving.

BioHashing (BH) is the first RP-based CB scheme proposed
by Teoh et al. [6]. In BH, the feature vector x ∈ Rm is
projected via y = R·x, where R is an user-specific orthogonal
random matrix in Rg×m, with g ⩽ m. The matrix R can be
generated from the password or token. The intermediate vector
y is then discretized based on a pre-defined threshold τ to
return a binary code z. The value τ = 0 is usually used in the
literature, so a function that computes the hash code can be
written briefly as z = sgn(y), where sgn(·) is a sign function.
The BH was regarded as non-invertible due to the usage of
a rectangular RP matrix (g ⩽ m) and thresholding operation.
However, from a single stolen hash code z, Lee et al. [28]
introduced an attack scheme to find a pre-image x′, such that
sgn(R·x). = sgn(R·x′). Later, Lacharme et al. [29] proposed
a genetic algorithm-based method that can approximate the
original biometrics template x from the compromised binary
hash code z and projection matrix R. Thus, it is shown that
BH is not pre-image resistant [28] [29]. Besides that, in an
event of multiple pairs of (y, R) are known to the attackers
(i.e., linkage attacks), exact x recovery is possible since the
attackers can collect enough y and R to solve a linear equation
system formed by y = R · x.

Based on BH, several CB schemes were put forward to ad-
dress the stolen-token issue. For instance, multispace random
projections presented in [9] and sectored random projections
proposed in [12] are the variants of BH. Lumini and Nanni
[10] proposed two solutions, namely, space augmentation and
features permutation in order to improve the performance of
BH. Wang and Plataniotis [11] introduced the secret translation
vector notion to strengthen the security and the performance
of the system.

The native BH was applicable only to a fixed size ordered
feature vector but did not fit to the non-ordered varying size
template such as fingerprint minutia. To address this limitation
and to protect the projection matrix R from being revealed,
Yang et al. proposed Dynamic Random Projection (DRP) [30].
Later, Jin et al. introduced two ranking-based CB schemes
for fingerprint, namely Gaussian Random Projection-based and
Uniformly Random Permutation-based Index-of-Max hashing
[7] (abbreviation as GRP-IoM and URP-IoM). In this paper,
we only compare our proposed method with GRP-IoM because
URP-IoM does not utilize the RP function in its operation.
Ghammam et al. [31] pointed out that this technique was
vulnerable against Authentication and Nearby Reversibility
attacks.

To ameliorate the trade-off of security and accuracy per-
formance, Feng et al. [8] presented a hybrid approach which
inherits advantages of both bio-cryptosystem and CB-based
strategy. In their scheme, the biometric feature vector is per-
turbed with RP for revocation purposes. Next, the transformed
template is binarized by a method called Discriminability
Preserving Transform (DPT). Since DPT is vulnerable against
masquerade attacks, the binary template is protected by Fuzzy

Commitment Scheme [32], which is a classic biometric en-
cryption scheme.

To derive unpredictable hash codes from biometric inputs,
Dang et al. proposed Full Entropy Hash (FEHash) [33].
This encodes the user’s feature vectors to pre-defined full
entropy binary strings which are, finally, protected by the
SHA-512 cryptographic hash function to meet the requirement
of irreversibility. We focus on the projection step in FEHash
only and refer the readers to [33] for more details. Particularly,
to obtain one bit of the hash code, the original vector x ∈ Rm

is projected to another domain with RFF transformation, i.e.,
y =

√
2/g cos(Ω · x + r), with random value r ∈ [0, 2π]g

and a random matrix Ω ∈ Rg×m. We assume that y and all
the projection parameters are known by the attackers. Clearly,
reversing x from RFF is much more complicated than from RP
since arccos is a multivalued function. However, if attackers
also have knowledge about the value range of x, the number
of the inversion solutions can be greatly reduced and hence
shrunken the solution searching space.

B. Motivation

From the literature, we observe that RP-based schemes share
a common general design to generate protected templates,
which is depicted in Fig. 2. First, the original template is
projected to another subspace by using projection function
f(·) to yield a random and changeable intermediate template
(revocability). The protection function h(·) is then applied on
this returned value to output the non-invertible template which
has no correlation with the input (irreversibility).

Fig. 2: The block diagrams generate protected templates of
(left) RP-based techniques and (right) our strategy, with f(·)
is projection function and h(·) is protection function. The
reversibility of function f(·) in RP-based approaches is the
weakness of this design.

To generate a new template, the projection step is repeated
with distinct projection helper data, and thus users can reissue
as many different templates as they require. This procedure
(of RP-based approaches) is described explicitly as follows:

R1 · x = y1

R2 · x = y2

...
Rk · x = yk

, (1)

with R ∈ Rn×m is random matrix and n < m. In the
worst scenario when both template y and matrix R are
leaked multiple times, RP function f(x) = R · x = y
becomes reversible (i.e., solving Eq. 1 is possible). Hence, the
secret biometric template can be recovered completely. This
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assumption could be used in the cross-matching attack [11]
which might be feasible if there were mistakes in the system
architecture. Let a lightweight RP-based framework proposed
by Punithavathi et al. [46] in 2019 be our example. Under
the mentioned attack, the framework would be undoubtedly
broken due to its careless construction (see Eq. 10, Fig. 4,
and Section 5.2 [46] for more details). Besides, the linear
characteristic of RP was usually exploited to weaken the
security guarantees of protection functions (i.e., reversibility
attacks [31] on GRP-IoM were performed by solving linearly
constrained quadratic equations). Thus, despite fascinating and
irreversible protection functions, the conspicuous fragility of
RP-based approaches lies in their projection method. There-
fore, it is critical and deserves immediate attention to develop
a secure alternative to RP, which motivates us to conduct this
research.

C. Contribution

Concisely, our contributions are summarized as follows:
1) Some of the afore-discussed transform approaches are

reversible (i.e., morphing technique [5], RDM [26], RP [6]);
therefore, we introduce a secure transformation method called
AVET. The proposed approach is a NP-hard problem yielding
a convincing security level even in the worst scenario.

2) The proposed function can mitigate the long-standing
problem of RP-based cancellable biometrics methods. Partic-
ularly, AVET is compatible with RP-based systems, which
helps to reuse those schemes, reducing development time
and avoiding massive modifications during reconstruction. To
demonstrate its adaptability, we apply AVET into two existing
techniques, namely, BH and GRP-IoM.

3) Some of transform functions are tailored for one specific
modality such as iris [34] and fingerprint [35]. The state-of-
the-art transformation technique, RDM, used only one feature
extraction method (i.e., log-Gabor) to derive bio-features for
all 5 different physiological modalities, which partly limits
the full understanding about RDM. To claim that AVET is
generic, universal, and easy to implement to various existing
systems, we carry out experiments on eight datasets for both
physiological and behavioural biometrics and extract feature
vectors by using an appropriate method for each of them.

4) We provide comprehensive theoretical proof to prove that
AVET holds both security and similarity preserving properties
and meets all four requirements of biometrics protection.
Besides, the major privacy and security attacks, i.e., brute
force attacks, false acceptance attacks, and ARM attacks are
described in detail.

III. METHODOLOGY

In Section III-A, we briefly present the concept of absolute
value vector, introduce the definition of closeness between data
points, and recall the JL lemma. In Section III-B, we describe
our proposed method and provide theoretical proof to prove
its privacy and similarity preserving properties.

A. Preliminaries

Following are some definitions used frequently in this paper.

Definition 1. Distance relationship between two vectors:
Given vectors c, d ∈ Rm and a small number ε ⩾ 0.

If dist(c,d) = ||c− d|| ⩽ ε, then c ≃ε d.

We could interpret the definition 1 as that two high-
dimensional data points are considered as close to each other if
the Euclidean distance between them is smaller than a factor
ε. This concept is widely implemented to minimize various
loss functions in machine learning, based on the fact that the
derived feature vectors from the same person are more akin
than those from different individuals.

Definition 2. Absolute value vector:
Given x ∈ Rm, absolute value of vector x is:

|x| = (|x1|, . . . , |xm|).

We denote the absolute value vector of x, the vector with
absolute values of each component of x, as |x|.

Lemma 1. Johnson–Lindenstrauss [36]: For any 0 < δ < 1
and any integer p, let n be a positive integer such that n ⩾
4(δ2/2 − δ3/3)−1ln(p). Then, for any set S of p points in
Rm, there is a map fR: Rm → Rn such that, for all c,d ∈ S,
(1− δ)||c− d||2 ⩽ ||fR(c)− fR(d)||2 ⩽ (1 + δ)||c− d||2.

JL lemma implies that we can choose a random matrix
R ∈ Rn×m, where each entry is sampled i.i.d. from a Gaussian
distribution N (0, I). Such that, with high probability, for any

vector x ∈ Rm,
1√
n
||fR(x)||2 is a 1 ± δ approximation to

||x||2, where fR(x) = R · x and δ is a small distortion value.
In short, the JL lemma is used to prove that RP is a similarity
preserving method; thus, the relationship between projected
data points remains unchanged with respect to Euclidean
distance. For the sake of simplicity, in this paper, we assume
δ = 0, which means the RP function following the JL lemma
can map high-dimensional data to other spaces with zero
distortion.

B. AVET: Absolute Value Equations Transform

The concept of general Absolute Value Equations (GAVE)
was first introduced by Mangasarian [37]; the form of this
problem is written as follows:

A · x+B · |x| = y, (2)

where input vector x ∈ Rm, matrices A,B ∈ Rn×m, and
vector y ∈ Rn. By reducing the NP-hard Knapsack Feasibility
Problem to the GAVE form, Mangasarian proved that solving
Eq. 2 is an NP-hard problem [37, proposition 2] (i.e., given
A,B,y, find x). Based on GAVE, we easily prove that:

A · u+B · |v| = y (3)

is also an NP-hard problem, where u and v are same length
vectors derived from x (i.e., the concatenation of u with v
equals x). Since vector u can always be represented via u =
v+p where p is a random vector; hence, Eq. 3 can be rewritten
as: A ·v+B · |v| = y−A ·p, which has the form of GAVE.
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Fig. 3: The intuition of the proposed method: (left) AVET function with input is point i in the above toy dataset. (right) Before
and after applying AVET: black points indicate original templates and red points are transformed outputs.

Because vector p is unknown, attackers have no information
about the value of y−A ·p. Therefore, the NP-hard problem,
Eq. 3, is infeasible to solve.

Obviously, if we can combine GAVE with biometrics, then
the security of bio-systems is ensured definitively thanks to
the NP-hard problem of absolute equations. However, we
cannot use directly neither the original GAVE algorithm nor
its variant (i.e., Eq. 3) as a means to transform biometric
template x. In section VIII-A, we provide a simple example
to explain why those two equations 2-3 could be broken by
using linkage attacks. To address this problem, an intuitive idea
is projecting vector v 7→ ϕ(v), which allows us to separate
the linkage information into disconnected data (i.e., creating
multiple GAVE problems). Therefore, Eq. 3 is updated to:
A · u + B · |ϕ(v)| = y, where ϕ(·) is any mapping function
that has distance preservation nature (i.e., linear function: RP;
non-linear function: Random Fourier Features).

Putting all together, we define our AVET function
avetR,A,B(·) : Rm → Rn via:

avet(x) = A · u+B · |R · v|, (4)

where u,v ∈ Rn are two sub-vectors derived from biometric
template x ∈ Rm, with n = ⌊m/2⌋. Particularly, the first half
of vector x is set as u and vector v is the later half of the input
template. Random matrices R,A,B ∈ Rn×n are sampled i.i.d.

from normal Gaussian distribution N
(
0,

1

n

)
. In addition,

there is a constraint, i.e., R · v ̸= u, which prevents AVET
from being converted back into the original GAVE problem.
Figure 3 illustrates the workflow of AVET and Algorithm 1
summarizes the procedure of generating a secure intermediate
template.

Remark 1. To avoid linkage attacks, matrix R must be unique,
independent, and non-repetitive every time users revoke their
protected templates.

Algorithm 1. Absolute Value Equations Transform (AVET)
Input: Biometric feature vector x ∈ Rm

Output: Transformed vector y ∈ Rn and helper data (R,A,B)

Workflow:
1: n = ⌊m/2⌋
2: u← x[: n]; v← x[n : 2n];

3: R,A,B
i.i.d.∼ N

(
0,

1

n

)
such that R · v ̸= u;

4: y← A · u+B · |R · v|;
return y, R,A,B;

AVET and existing cancellable biometrics systems:
To show the compatibility between AVET and existing CB

schemes, RP function in BH and GRP-IoM algorithms would
be replaced by our proposed transformation. The two variants
are dubbed as Bi-AVET and In-AVET.

1) Bi-AVET: Like the structure of BH, we apply a threshold-
based method that can binarize the returned value of avet(x)
without affecting the accuracy significantly. The Bi-AVET
function is defined as follows:

b avet(x) = sgn(avet(x)). (5)

2) In-AVET: Multiple different triplets {(R,A,B)i}ki=1 are
generated. Without loss of generality, matrices A,B have a
size of g × n in In-AVET. For each triplet, the intermediate
vector yi = avetRi,Ai,Bi

(x) is calculated, and its max element
yij = max(yi) is found, with j ∈ [g]. The index of that
max element (i.e., value j) is then appended to the protected
template z ∈ {1, ..., g}k.

C. Privacy Preserving

In this section, we provide the security proof of AVET.
The proposition 1 shows that even in the worst situation, it
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is computationally hard for attackers to retrieve the original
feature vector. To find x, they must solve an underdetermined
system, which has infinitely many solutions.

Proposition 1. According Algorithm 1, let x = (x1, . . . , xm)
be a solution of the system:

A · u+B · |R · v| = y,

where vector u = (x1, . . . , xn) and v = (xn+1, . . . , xm),
matrices R,A,B ∈ Rn×n, and vector y ∈ Rn. Given a set of
k compromised quadruplets {(R,A,B,y)i}ki=1 of the same
vector x, with n,m, k ∈ N∗ and m = 2n. Finding x, the
solution of Eq. 4, is computational infeasible.

Proof.
- Case k = 1: With absolute term |R · v|, we set vector t =
|R ·v| = (|r1 ·v|, . . . , |rn ·v|), with i ∈ [n]. Thus, the system
becomes A · u+B · t = y, which can be written as:

a11u1 + · · ·+ a1nun + b11t1 + · · ·+ b1ntn = y1
...
an1u1 + · · ·+ annun + bn1t1 + · · ·+ bnntn = yn

(6)

The system (6) is a system of n equations of 2n unknowns.
- Case k + 1: We have:

a1
11u1 + · · ·+ a1

1nun + b111t
1
1 + · · ·+ b11nt

1
n = y1

1

...
a1
n1u1 + · · ·+ a1

nnun + b1n1t
1
1 + · · ·+ b1nnt

1
n = y1

n

...
ak+1
11 u1 + · · ·+ ak+1

1n un + bk+1
11 tk+1

1 + · · ·+ bk+1
1n tk+1

n = yk+1
1

...
ak+1
n1 u1 + · · ·+ ak+1

nn un + bk+1
n1 tk+1

1 + · · ·+ bk+1
nn tk+1

n = yk+1
n

(7)
The system (7) is an underdetermined system of (k + 1)× n
equations with (k + 2)× n unknowns.

Conclusion: Given k distinct sets {(R,A,B,y)i}ki=1, we
can establish a system of k × n equations with (k + 1) × n
unknowns. Therefore, reversing x from those leaked informa-
tion is equivalent to solving an underdetermined system, which
yields infinitely many solutions.

In the worst case, the proposition 1 implies that it is
impossible for attackers to learn the actual values of all entries
in x. Note that both AVET and RP rely on information loss via
dimensional reduction to prove irreversibility. However, with
RP, attackers can collect enough information over time and
then obtain exactly the biometric template x, i.e., solving a
system in which the number of equations is equal to that of
unknowns. By contrast, AVET is always an underdetermined
system thanks to additive absolute terms.

From the above discussion, the soundness of our method
is confirmed. Particularly, in normal cases, if attackers have
no knowledge of the structure of AVET, they gain no fruitful
information from disclosed {(R,A,B,y)i}ki=1. In the worse
case when one quadruplet (R,A,B,y) and AVET algorithm
are both known by adversaries, solving Eq. 4 from the
compromised data is as hard as solving NP-hard problem.
Even in the worst scenario, attackers cannot find exactly the
biometric template x because AVET remains permanently
underdetermined.

D. Similarity Preserving

In this section, we prove that our proposed method has
distance preservation property via lemma 2. First, we prove
that if the feature vectors are close, then their corresponding
absolute vectors are close to each other also.

Proposition 2. For all c, d ∈ Rm and a non-negative real
number ε. If c ≃ε d, then |c| ≃ε |d|.

Proof. Let c ≃ε d
⇐⇒ ||c− d||2 ⩽ ε2

⇐⇒
∑m

i=1(ci−di)
2 ⩽ ε2 (∗)

By the Reverse triangle inequality, we have:
||c| − |d|| ⩽ |c− d|
⇐⇒ (|c|−|d|)2 ⩽ (c−d)2 (∗∗)

By (∗) and (∗∗), we have:

dist(|c|, |d|) =
√∑m

i=1 (|ci| − |di|)2

⩽
√∑m

i=1 (ci − di)
2 ⩽ ε

Thus, |c| ≃ε |d|.

In this paper, we assume that if feature vectors c and d
are close, then their sub-vectors are also close to each other,
i.e., uc ≃ε ud and vc ≃ε vd. We prove that if c ≃ε d, then
the Euclidean distance between transformed vectors is never
exceed 2ε.

Proposition 3. For all c, d ∈ Rm and a non-negative real
number ε. If c ≃ε d, then avet(c) ≃2ε avet(d).

Proof. Set:
avet(c) = A · uc +B · |R · vc| = e+ o.
avet(d) = A · ud +B · |R · vd| = p+ q.
By the lemma 1 (i.e., JL lemma with the zero-distortion

assumption) and proposition 2, if c ≃ε d, we have:{
fA(uc) ≃ε fA(ud)

fB(|fR(vc)|) ≃ε fB(|fR(vd)|)
⇐⇒

{
e ≃ε p
o ≃ε q

.

The Euclidean distance between two transformed vectors:
dist(avet(c), avet(d)) =

√∑m
i=1 (ei + oi − pi − qi)

2

=
√∑m

i=1 (ei − pi)
2
+ (oi − qi)

2
+ 2(ei − pi)(oi − qi)

⩽
√∑m

i=1 2 (ei − pi)
2
+ 2 (oi − qi)

2 (Cauchy inequality)
⩽

√
2ε2 + 2ε2 = 2ε.

Thus, avet(c) ≃2ε avet(d).

If feature vectors c, d belong to different individuals, then
the distance between them would be large, i.e., ||c−d|| ⩽ ∆,
with ∆ ≫ ε. By the same argument with propositions 2-3 we
get avet(c) ≃2∆ avet(d).

Lemma 2. Upper bound of AVET:
Given transform function avet(·) according to Eq. 4, for all

inputs c, d ∈ Rm, we have:
||avet(c)− avet(d)|| ⩽ 2||c− d||.

Based on propositions 2 and 3, the correctness of lemma 2 is
proved, which says that the Euclidean distance between two
projected templates is proportional to the distance between
original vectors. Like the state-of-the-art transform function
RDM, the lower bound of AVET is still an open question.
However, the promising results obtained in the next section
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help to imply that inter and intra variations of the data are
largely maintained after applying AVET.

IV. EXPERIMENTS

A. Datasets

(a) Face (b) Ear (c) Fingerprint

(d) Inertial sensor-based gait signal

Fig. 4: Raw biometric examples from: (a) LFW, (b) IITD-Ear,
(c) FVC2002-DB1, (d) CNU datasets.

- Labeled Faces in the Wild (LFW) [38]: The dataset
consists of 13,233 facial images of 5749 individuals gathered
from the Internet. There are 423 subjects with more than four
images. The first five images of those identities were used in
the experiments.

- Celebrities in Frontal-Profile in the Wild (CFPW) [39]:
The dataset contains images of 500 celebrities in frontal and
profile views. Frontal-pose pictures were used in experiments
so that each subject has 10 images.

- CASIA Face Image Database Ver. 5.0 (CASIA-V5) [40]:
We used the cropped version of this dataset, which consists
of 2500 color images of 500 subjects. All of the crops are
considered to be used in the experiments.

- IIT Delhi Ear Image Database Ver. 1.0 (IITD-E) [41]: The
database consists of two versions: raw and cropped ears. There
are 31 subjects with more than four images. The first five raw
images of those individuals were used in the experiments.

- Fingerprint Verification Competition (FVC2002) [42]:
We used DB1, DB2, and DB3 datasets of FVC2002 for
experiments. Each dataset contains images of 100 different
individuals. For each subject, the first three finger images were
used for training feature extraction model, the remaining 5
images were used in transformation experiments.

- The gait dataset of Chonnam National University (CNU)
[43]: The dataset contains gait signals of 38 subjects captured
using mobile phone sensors. The data were acquired during a
long-time span of several days and under varied environmental
conditions (i.e., shoes, clothes, road surfaces), thus this dataset
is considered almost realistic. To obtain the same number
of feature vectors, 10 gait cycles of each subject are taken,
yielding a total of 380 feature embeddings.

B. Setup

Distinct human traits have distinct characteristics, thus we
apply particular methods that were best fitted to extract
different types of biometrics. Table II provides details of
the extraction methods implemented and their corresponding
output representations.

Matching experiments are performed with state-of-the-art
CB schemes, namely, BH, GRP-IoM, and RDM. The three
techniques are generic and can be applied to various human
traits. Besides, the original matching results are also reported.
With BH, we project feature vectors x ∈ Rm using an orthog-
onal matrix of size ⌊m/2⌋×m. In terms of the ranking-based
method [7], the GRP-IoM variant was used in experiments. In
RDM, the dimension of transformed features is always reduced
to half because of the nature of this algorithm. Therefore, if
the input vector’s length is an odd number, we remove the last
element of the vector before running RDM.

In the experiments, the proposed transformation function
AVET and its two enabled CB methods (i.e., Bi- and In-AVET)
are implemented. With AVET and Bi-AVET, matrices R,A,B
have size n× n, with n = ⌊m/2⌋. For In-AVET, we sample1

k = 300 distinct triplets {(R,A,B)i}ki=1, with R ∈ Rn×n

and A,B ∈ Rg×n, where g = 16.

TABLE II: Feature extraction methods for different modalities.

Modality Employed feature extraction techniques Dim.
Face - We applied the same preprocessing steps R512

in [33] and the pretrained FaceNet model2

to extract facial features.
Ear - We applied the pretrained CNN model in R512

paper [44] to extract features.
Fingerprint - We applied the same preprocessing steps R299

and Kernel Principal Component Analysis
(KPCA) method in [45] to get fixed length
feature vectors.

Gait - We used the framework in [43] to extract R289

user’s features on both time and frequency
domains.

C. Evaluation metrics and Matching method

Five metrics, namely, Equal Error Rate (EER), Decidability
Index (DI), Recognition Index (RI), Receiver Operating Char-
acteristic (ROC) curve, and Cumulative Match Characteristics
(CMC) curve were used to evaluate the system performance.
The experiment is repeated 5 times, each time with different
enrolled (or gallery) images and helper data. The mean and
standard deviation of EER, DI, and RI are reported. In this
paper, the degree of closeness between protected templates is
computed in a transformed domain with respect to Euclidean
distance. Based on original published papers, distinct measure-
ments are implemented for different transformation methods.
Particularly, BH uses Hamming, GRP-IoM uses Jaccard, and
RDM uses cosine distance to compute similarity scores.

1k = 300 and g = 16 are optimal hyperparameters in the original paper.
2Available: https://github.com/davidsandberg/facenet
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TABLE III: EER% for original and transformed templates in the stolen helper data scenario (lower is better).

Method LFW CFPW CASIA-V5 IITD-E 2002-DB1 2002-DB2 2002-DB3 CNU
Without protection function

Original 1.83±0.22 1.90±0.25 5.95±0.23 5.65±1.14 0.15±0.12 0.35±0.12 2.15±0.46 1.99±0.60
RP 2.27±0.10 2.30±0.18 6.47±0.30 6.61±1.56 0.35±0.34 0.90±0.49 4.95±0.83 2.28±0.75

RDM (no MF) 5.69±1.45 6.42±1.63 8.72±0.89 8.87±1.35 0.70±0.37 1.40±0.44 4.40±0.64 28.60±5.31
AVET 2.51±0.15 2.64±0.24 6.98±0.50 6.13±0.97 0.05±0.10 0.36±0.13 2.22±0.76 2.75±0.82

With protection function
BH 2.72±0.23 2.81±0.27 7.64±0.40 6.61±1.72 0.35±0.25 1.12±0.56 5.30±1.01 11.81±1.32

GRP-IoM 2.25±0.24 2.33±0.33 7.07±0.30 6.13±0.97 0.20±0.19 0.50±0.27 2.95±0.73 5.20±1.13
RDM 13.50±2.49 15.45±2.42 14.12±1.72 12.10±1.52 2.45±0.66 5.40±0.51 7.75±1.13 49.77±1.30

Bi-AVET 3.85±0.11 4.60±0.33 9.22±0.47 7.90±0.14 0.2±0.18 0.60±0.33 3.40±0.87 15.93±2.20
In-AVET 2.51±0.18 2.53±0.25 7.16±0.12 6.13±0.90 0.05±0.17 0.39±0.18 1.55±0.37 6.24±1.30

TABLE IV: DI for original and transformed templates in the stolen helper data scenario (higher is better).

Method LFW CFPW CASIA-V5 IITD-E 2002-DB1 2002-DB2 2002-DB3 CNU
Without protection function

Original 4.51±0.07 4.37±0.11 3.22±0.04 3.11±0.18 7.03±0.35 6.89±0.37 4.48±0.24 2.50±0.05
RP 4.25±0.06 4.12±0.08 3.11±0.05 3.09±0.18 5.98±0.28 5.44±0.35 3.65±0.18 2.49±0.08

RDM (no MF) 3.13±0.29 2.91±0.25 2.78±0.18 2.57±0.19 4.90±0.27 4.56±0.14 3.17±0.12 1.11±0.13
AVET 3.98±0.06 3.85±0.07 3.02±0.08 3.03±0.16 7.73±0.31 6.12±0.43 3.86±0.21 2.50±0.07

With protection function
BH 3.87±0.03 3.71±0.08 2.84±0.05 2.77±0.16 4.95±0.18 4.56±0.16 3.25±0.18 1.97±0.09

GRP-IoM 3.37±0.06 3.11±0.08 2.73±0.04 2.34±0.25 4.22±0.16 3.93±0.22 2.82±0.10 2.51±0.10
RDM 2.29±0.24 2.09±0.21 2.21±0.18 2.29±0.21 3.68±0.25 2.96±0.08 2.79±0.15 0.05±0.04

Bi-AVET 3.39±0.04 3.20±0.05 2.63±0.08 2.58±0.12 3.89±0.27 5.44±0.31 3.71±0.23 1.96±0.21
In-AVET 3.93±0.04 3.90±0.03 2.92±0.03 2.98±0.14 7.51±0.16 6.27±0.25 4.54±0.14 2.26±0.12

TABLE V: RI% for original and transformed templates in the stolen helper data scenario (higher is better).

Method LFW CFPW CASIA-V5 IITD-E 2002-DB1 2002-DB2 2002-DB3 CNU
Without protection function

Original 91.90±0.66 89.58±1.22 74.44±2.20 95.32±0.79 99.85±0.12 99.75±0.00 95.65±0.96 95.38±2.18
RP 89.68±0.75 87.51±1.29 72.53±2.26 95.00±1.64 99.70±0.24 99.15±0.44 92.45±0.19 94.15±2.67

RDM (no MF) 81.90±4.11 76.76±5.16 69.33±2.20 94.52±1.09 99.35±0.37 97.55±1.20 89.15±1.86 67.72±3.40
AVET 88.11±0.87 86.05±1.39 70.65±2.03 94.68±1.39 99.85±0.12 99.75±0.16 94.50±1.08 93.04±2.16

With protection function
BH 84.73±0.57 82.60±1.66 62.50±3.11 92.74±1.98 99.65±0.25 98.30±0.98 90.35±1.51 40.70±3.93

GRP-IoM 89.00±0.80 86.85±1.36 70.15±2.47 94.84±1.21 99.80±0.19 99.50±0.22 94.30±0.68 82.16±3.79
RDM 58.82±8.65 50.45±8.19 51.95±4.36 89.52±1.61 95.35±2.12 85.20±2.58 80.65±2.92 7.08±3.98

Bi-AVET 77.84±0.75 74.85±1.16 57.13±2.55 91.45±1.09 99.55±0.29 99.00±0.57 91.05±1.78 38.66±4.28
In-AVET 88.22±0.68 85.80±1.36 69.21±1.94 94.52±0.94 99.95±0.10 99.85±0.12 96.20±0.53 80.88±4.61

In the verification task, one-shot enrollment was imple-
mented. We randomly chose one image per user for enrollment
and the rest were used for testing. False Accept Rate (FAR)
and False Reject Rate (FRR) are common metrics used to
measure matching efficiency. EER is defined as a point where
FAR equals FRR. The lower the EER value obtains, the
better the system performance. The metric DI estimates how
separable the genuine distribution is from its corresponding
impostor one. Given genuine and impostor score populations,
DI is calculated as follows: DI = |µg − µi|/

√
(σ2

g + σ2
i )/2,

with (µg, σg) and (µi, σi) are (mean, standard deviation) of

genuine and impostor distributions, respectively. The higher
DI implies the better discrimination between intra and inter
classes, yielding lower error rates (i.e., EER, FAR, FRR).
Besides, ROC curve plots display the overview of performance
comparison between selected methods, supported by the AUC
(area under the curve) score.

With the identification experiment, we used metric RI
which is commonly called rank-1 identification rate (i.e., rank
r = 1) to evaluate the identification ability of the system. To
criticize the ranking power of the system, we illustrated the
identification rate with respect to rank r via CMC curves.
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(a) LFW (b) CFPW (c) CASIA-V5 (d) IITD-E

(e) 2002-DB1 (f) 2002-DB2 (g) 2002-DB3 (h) CNU

Fig. 5: ROC curves in the stolen helper data scenario; “A” denotes Area under the curve (best view in color).

(a) LFW (b) CFPW (c) CASIA-V5 (d) IITD-E

(e) 2002-DB1 (f) 2002-DB2 (g) 2002-DB3 (h) CNU

Fig. 6: CMC curves in the stolen helper data scenario (best view in color).

D. Results

1) Unimodal Cancellable Biometrics: Tables III, IV, V
report evaluation results in terms of EER, DI, and RI respec-
tively. Besides, the ROC and CMC curves are displayed in Fig.
5-6 to generally compare the performances of AVET to two
state-of-the-art algorithms: RP and RDM (i.e., the term “RDM
(no ML)” indicates the RDM transform method without its
protection function - Median filter). Recall that, to show the
real influence of transform functions, the simplest verification
and identification schemes were used in experiments. In addi-
tion, the dimension of all transformed vectors generated by the
three observed techniques was reduced with the same factor
(i.e., 50%) so that the performances of those methods could

be analyzed fairly. All results in this section were measured
under the stolen helper data scenario, in which each subject
was given the same projection parameters to transform the
biometrics templates.

We observed that both RP and AVET can preserve, pretty
well, the baseline performance that does not perform any
transform function (i.e., original data). The results of AVET
are slightly lower than RP on the majority of matching
experiments, which is easy to explain since AVET gains more
distortions than RP due to losing information for the purpose
of privacy. It is a trade-off between accuracy and security;
in turn, AVET is much more secure than RP, which is the
dominant advantage of our proposed method.
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In both verification and identification tasks, our proposed
method exceeds RDM for all eight datasets. With learned
features (i.e., the first seven datasets applied machine/ deep
learning-based extraction methods), performances of RDM
are quite close to those of AVET. For the hand-crafted gait
features, RDM yields an uncommonly high EER value of
about 28.60%, which is more than 10 times compared with
our proposed method. The reason for this event is that RDM
relies on a stronger assumption than the one adopted in
this research. Particularly, RDM assumes that if two feature
vectors a and b belong to the identical individual, then the
dissimilarity between their pairwise elements would be small.
In other words, the distance preservation property of RDM was
proved based on an element-level assumption: |ai − bi| < ε,
with i ∈ [m]. While, more generally, RP uses a vector-level
one: ||a − b||2 < ε. So that the similarity preserving of
AVET, loosely speaking, relies on the hybrid assumption (i.e.,
proposition 3) in the unimodal mode. The difference between
two types of assumptions is illustrated in Fig. 7. Besides, like
RP, RDM (without Median filters) is a reversible and insecure
transform function in the worst case [26, Section V-C]. Thus,
AVET outperforms RDM transform function regarding both
accuracy and security perspectives.

(a) Element-level similarity (b) Vector-level similarity

Fig. 7: Illustration of element and vector-level assumptions.

As anticipated, after applying protection functions, both
Bi-AVET and In-AVET achieve competitive performances
compared with the original schemes (i.e., BH and GRP-IoM).
This implies that the proposed method AVET is suitable with
existing RP-based architectures. Notably, unlike the entirely
provable cancellation schemes such as BH and GRP-IoM, the
similarity preserving property of RDM was proved without
including the protection step. It might be an explanation
why the performance of RDM scheme reduces sharply after
implementing the Median filters.

(a) LFW (b) CFPW

Fig. 8: Performance comparison under open-set condition.

Under the open-set condition, the efficiency of AVET with
respect to false positive and false negative identification rates
(i.e., FPIR and FNIR) was analyzed on eight distinct datasets.
Particularly, we randomly selected 20 percent of subjects
as unknown individuals, so the ratio of known to unknown
subjects was 4:1 in each dataset. As expected, the open-set
results followed the same pattern seen in previous experiments.
We illustrate the typical ”FPIR versus FNIR characteristics”
over LFW and CFPW datasets in Fig. 8.

To show the robustness of AVET, the speed of transforming
a single feature vector into an intermediate template was
computed and displayed in Table VI. This experiment was
implemented in Python 3.7 and executed on a computer
equipped with a Core i5-8500 3.00GHz processor, 32GB of
RAM, and a SATA SSD of 1TB. We observed that both RDM
and AVET are able to transform feature vectors in a very short
time. By contrast, RP requires more effort since generating an
orthogonal matrix is time-consuming.

TABLE VI: Computational speed comparison with other trans-
form functions reported in seconds.

Dim. RP RDM AVET
I: Generating helper data
Helper Orthogonal matrix Random grid RG, Random matrices

data R random key K R,A,B

R512 2.1137±0.0070 0.00049±3.918e−7 0.00516±0.00027
R299 0.2647±0.0127 0.0003±0.00022 0.00198±3.54e−7

R289 0.2411±0.0091 9.92e−5±0.000222 0.00178±0.00027
II: Computing an intermediate template y

Algo- Reduce size of R; fs = x+RG; u,v← x;
rithm R · x D ← fs,K A · u+B · |R · v|
R512 0.0016±0.0022 0.00178±0.00027 0.00049±1.07e−7

R299 0.0004±0.0004 0.00079±0.00027 9.92e−5±0.00022
R289 0.0003±0.0003 0.00099±1.31e−7 9.92e−5±0.00022∑

= I + II: Total time
R512 2.1139±0.0071 0.00188±0.00022 0.00565±0.00027
R299 0.2651±0.0128 0.00109±0.00022 0.00208±0.00022
R289 0.2414±0.0093 0.00099±1.31e−7 0.00179±0.00027

2) Bimodal Cancellable Biometrics: Table VII reports the
matching results for bimodal transformed vectors generated
from the combination of face and ear biometrics. In this
experiment, a raw facial vector is concatenated with an ear
feature vector to produce an original bimodal embedding.
With RDM, vectors fX and fY are face and ear biometric
templates, respectively. Likewise, in AVET, vector u is facial
features and vector v is filled up with ear features. Obviously,
in the bimodal mode, the similarity preserving property of
AVET can be proved with the vector-level assumption, while
RDM still relies on the element-level one. It means RDM uses
a stronger assumption than AVET, which may explain why
our proposed algorithm achieves an extremely higher accuracy
than that of RDM. As expected, the bimodal approach returns
better performance compared to the unimodal method, which
indicates that AVET is effective for generating both unimodal
and bimodal cancellable templates.
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TABLE VII: Accuracy performances for transformed tem-
plates (without protection function) in the stolen helper data
scenario.

Metric Method LFW + IITD CFPW + IITD CASIA + IITD

EER%
Original 0.63±0.32 0.79±0.24 2.22±0.81

RDM 4.88±2.22 4.79±1.97 4.65±2.37
AVET 0.81±0.001 1.08±0.33 2.53±1.22

DI
Original 5.27±0.30 5.23±0.26 4.47±0.45

RDM 3.44±0.51 3.46±0.58 3.50±0.57
AVET 4.93±0.31 5.03±0.24 4.36±0.45

RI%
Original 99.19±0.94 99.68±0.65 98.55±1.72

RDM 99.03±0.94 98.55±1.07 98.39±2.10
AVET 99.19±0.72 99.19±0.51 98.55±1.79

V. ANALYSIS

A. Unlinkability

As mentioned above, irreversibility and unlinkability are
the two most critical criteria in the CB field. Concerning
irreversibility, projecting the feature vector via ϕ(x) = R · x
before transforming it with absolute equations is required to
guarantee the security of the system. Regarding the latter
requirement, we expect that function ϕ(·) will also help
in reducing linkability between templates. To examine our
prediction and gain a full understanding of the role of ϕ(·),
we analyze the system’s linkability degree in two conditions:
“With R” and “Without R”. Those settings reflect the unlink-
ability level achieved by AVET and Eq. 3, respectively.

In this section, the unlinkability of AVET is justified using
the framework that was developed by Gomez-Barrero et al.
[47]. Various secure intermediate templates are generated by
using AVET with 10 distinct triplets (R,A,B). The mated
pairs templates correspond to transformed templates derived
from the same subject and the non-mated pairs are templates
extracted from different samples. The linkability of the system
is evaluated via the global score Dsys

↔ ∈ [0, 1]; the closer the
score to zero, the better the proposed method. We illustrate
the unlinkability curves of mated and non-mated distributions
over LFW dataset in Fig. 9. The two distributions are almost
overlapped each other, yielding a significant low linkability
score Dsys

↔ = 0.00959 when using AVET. The Dsys
↔ scores of

other datasets are displayed in Table VIII.

(a) Without R (b) With R

Fig. 9: Unlinkability analysis on LFW dataset.

It is observed from Table VIII that the global linkability
scores Dsys

↔ in both cases are negligible, which implies that
AVET satisfies the stringent requirement of unlinkability.

TABLE VIII: Global linkability scores Dsys
↔ for different

datasets and settings.

Dataset Without R With R Dataset Without R With R

LFW 0.00975 0.00959 02-DB1 0.02744 0.02323
CFPW 0.00736 0.00621 02-DB2 0.02763 0.02137
CASIA 0.01200 0.01069 02-DB3 0.02708 0.02517
IITD-E 0.05374 0.05222 CNU 0.05283 0.04837

Furthermore, the linkability scores are slightly decreased on all
eight datasets when projection function ϕ(·) was applied. This
means using matrix R not only plays an important position
in irreversibility but also contributes to enhance unlinkability
perspective.

B. Security

1) Brute force attack: In brute force (BF) attacks, attackers
have no information about the system (i.e., procedure flow of
execution, implemented techniques). They search exhaustively
and try all possible combinations to find the original biometrics
template x. Since those templates are real-valued vectors,
guessing exactly x is computationally hard. If the adversaries
have knowledge about minimum and maximum values of the
feature components of x, they can reduce the search space.
For instance, assume that attackers know the minimum and
maximum values of CFPW dataset are −0.2156 and 0.2070,
respectively. There are 4227 > 212 possibilities to guess
a single element of vector x. Thus, the entire 512 feature
components require around 212×512 = 26144 attempts in total.
The probabilities P to get the precise templates x are presented
in Table IX; the minimum and maximum values are displayed
with 4 decimal precision.

TABLE IX: BF attack analysis: Probability to guess correctly
single and entire components of the original template x.

Dataset Min value Max value P (single) P (total)
LFW -0.1857 0.1933 1/3791 < 1/211 1/211×512

CFPW -0.2156 0.2070 1/4227 < 1/212 1/212×512

CASIA -0.1896 0.1866 1/3763 < 1/211 1/211×512

IITD-E -0.1306 0.1748 1/3055 < 1/211 1/211×512

02-DB1 -0.8031 0.6303 1/14335 < 1/213 1/213×299

02-DB2 -0.7130 0.6831 1/13962 < 1/213 1/213×299

02-DB3 -0.5224 0.5688 1/10913 < 1/213 1/213×299

CNU -0.0702 0.7649 1/8352 < 1/213 1/213×289

2) Pre-image attack: In this attack, adversaries try to find
a template x̃ that has a specific hash value, i.e., h(x̃) =
h(xgenuine). On one hand, distance-preserving is an indis-
pensable property that helps to maintain the performance and
efficiency of CB schemes. But on the other hand, attackers can
also rely on the leakage information inherent to this nature to
perform pre-image attacks (or similarity-based attacks [19]).
For instance, with BH, attackers attempt to find a pre-image
x̃ ∈ Rm satisfying sgn(R · x̃) = sgn(ỹ) = z. Lee et al.
[28] proposed an attack scheme in which the pre-image could
be generated easily. Fortunately, there are several security
proposals to address this problem (i.e., designing a helper data
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management protocol to hide helper data [48], avoiding two-
factor input [49], protecting helper data with bio-encryption
techniques [50], designing a secure authentication structure
[19]). Note that tailoring a complete bio-protection system,
which is resilient against those threats, is out of scope in this
research and is the topic of the next study.

3) False acceptance attack: The threshold-based decision
approach is commonly implemented in biometric applications
and systems. In the verification phase, the access can be
granted when the matching score is lower (or higher) than
the pre-defined threshold τ . In false acceptance (FA) attacks,
attackers exploit the false positive rate of the system to gain
illegitimate access to target accounts. To perform FA attacks,
initially, adversaries gather and create a huge database of
biometric images. Let the scheme In-AVET be our example,
those forged samples are then verified to find a feature vector
ω satisfying matching(in avet(ω), zs) ⩾ τ , with zs is
the stored protected template. Table X summarizes how we
establish two large databases, namely, Face-DB and Finger-
DB, which were used in this experiment. The genuine dataset
corresponds to a set of authentic users of the system. Their
transformed templates are stored in the system’s storage as
gallery images. The impostor dataset contains biometric im-
ages collected by attackers.

TABLE X: Databases used for FA attack experimentation.

Database Genuine Impostor
Face-DB CFPW dataset, LFW + CASIA-V5 (5749 + 500),

total: 500 subjects total: 6249 subjects
Finger-DB 02-DB1 dataset, 02-DB2, 02-DB3, 04-DB1, 04-DB2,

total: 100 subjects 04-DB3 (100×5), total: 500 subjects

In various applications and systems, there is a maximum
number of entering wrong passwords to prevent attacks and
security threats. Let’s assume that there is no limitation
about the number of wrong querying biometric samples, i.e.,
attackers can query forged biometric templates as many as
they want. Thus, adversaries can use all their available images
to run FA attacks. For experiments on Face-DB and Finger-
DB, the achieved EER values equal to 1.9 × 10−4% and
7.9× 10−6%, respectively. Those low EERs indicate that our
proposed approach can defend towards false acceptance at-
tacks. We demonstrate the genuine and impostor distributions
(with respect to matching score) under FA attacks in Fig. 10.

(a) Face-DB (b) Finger-DB

Fig. 10: FA attack analysis: Genuine and Impostor distribu-
tions.

4) Attacks via record multiplicity: In attacks via record
multiplicity (ARM), adversaries have more than one copy of
transformed templates derived from the identical subject and
attempt to trace back exactly the original template by linking
those leaked data. We assume that attackers have multiple
compromised user’s information {(R,A,B,y)i}ki=1.
• k = 1: Based on the hardness of absolute equations, we

claim that solving AVET is an NP-hard problem, which is as
hard as the Knapsack problem [37].
• k > 1: The proposition 1 proves that for every new stolen

quadruplet (R,A,B,y), attackers gain more n equations and
n unknowns. Therefore, adversaries can only establish an
underdetermined system of k × n equations with (k + 1)× n
unknowns.

Another way to recover x is expanding the absolute terms
correctly n times to construct a linear system in which the
number of equations is equal to that of unknowns. However,
the proposition 4 implies that the probability to guess exactly
the sign of n inner products between the user’s vector v and
random generated matrix R is P = 1/2n, which is negligible.

Proposition 4. Let v ∈ Rn be a fixed vector and r ∈ Rn

be a random vector which is sampled i.i.d. from a normal
distribution N (0, s2). Let X be the event that an inner product
of r and v is positive. The probability of event X to occur is
P = 0.5.

Proof. We set Y = r · v =
∑n

i=1 rivi. Since r ∼ N (0, s2),
mean of Y equals to zero and V ar(Y ) can be computed as:

V ar(Y ) = ||
n∑

i=1

rivi||2 =

n∑
i=1

r2i v
2
i = s2

n∑
i=1

v2i = ||v||2s2.

Thus, Y is a normal random variable with mean µ = 0 and
variance σ2 = ||v||2s2. By standardizing, the random variable

Z defined by Z =
Y − µ

σ
has a standard normal distribution.

Therefore: P(Y ⩽ 0) = P
(
Y − µ

σ
⩽

0− µ

σ

)
= P(Z ⩽ 0)

= P(−∞ < Z ⩽ 0) = A(0)−A(−∞) = A(0) = 0.5,

with A is the area under the standard normal curve. Hence,
P(Y ⩽ 0) = P(Y > 0) = 0.5.

Thus, the proposed AVET is more resilient against ARM
attacks compared to RP and RDM transform methods which
are completely broken under this condition.

VI. DISCUSSION

Recently, it has witnessed several deep learning-based meth-
ods for cancellable biometrics, such as face [50] - [54] and
EEG signals [55]. The two studies [51] and [52] share the same
idea in the transforming step, in which a binary string is pre-
defined to each user. A neural network learns to map the user’s
bio-features to that pre-assigned intermediate template. Hence,
the network has to be re-trained whenever the user revokes
his/her protected template. In [54], as there is no mention about
the measures taken to re-issue protected templates, how the
system satisfies the cancellability request is questionable. All
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of the three researches [53], [50], and [55] are non-generic CB
schemes that were tailored for mere certain traits. Particularly,
the projection and protection stages in [55] were designed and
only suitable for EEG signals.

Recall that the objective of this work is not to introduce a
novel bio-template protection scheme but the secure transform
function. Bi-AVET and In-AVET were used to illustrate the
compatibility of our proposed algorithm that helps to enhance
the security level of existing RP-based systems. By comparing
the performance of AVET-based methods with deep learning-
based CB schemes, we add more evidence to support the
claim that AVET provides sufficient security while maintaining
usability.

TABLE XI: Performance comparison with deep learning-based
bio-template protection schemes on CMU-PIE database.

Method Year GAR@FAR
MEB Encoding [51] 2016 93.22%@0%

Deep CNN [52] 2018 91.91%@0.1%
Deep LDPC*[53] 2019 98.9%@0.1%

DH-NND [54] 2019 96.2%@0.01%
SecureFace [50] 2021 99.00%@0.1%

Bi-AVET 2022 99.70%@0.1% (97.35%@0.01%)
In-AVET 2022 99.95%@0.1% (98.90%@0.01%)

* The value of GAR@FAR is estimated based on the corresponding
ROC curves reported in [53].

To be fair, we used the same settings with previous studies
[51] - [54] on the CMU-PIE [56], which yields a dataset that
consists of 7140 facial images of 68 subjects. Table XI reports
the comparison results regarding the Genuine Acceptance Rate
(GAR) against FAR. This shows that our proposed method
achieves competitive performance compared to the state-of-
the-art SecureFace [50].

VII. CONCLUSION

In this paper, we propose the secure projection function,
AVET, which can be used as an alternative of the highly
efficient yet fragile Random Projection. In addition, AVET
is compatible with RP-based approaches, which means it is
easy to implement to existing bio-systems without changing
much in terms of design and performance. Our proposed
method is established based on the famous mathematics work
called Absolute Value Equations. Therefore, solving AVET is
as hard as solving the Knapsack NP-hard problem. Besides,
both the security and similarity preserving properties of AVET
are constructed and proved under realistic and reasonable
assumptions. Unimodal and bimodal transformed templates
generated by using AVET are compared with the original
and other transform techniques for several modalities. By
achieving promising accuracy on all observed datasets, we
empirically show that AVET is stable, robust, and universal.
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VIII. APPENDIX
In this section, we provides three examples to show that AVET is more
reliable than both GAVE and its variant against linkage attacks. For the
sake of convenience, we use integers in our examples.

A. Absolute Value Equations
Assume that attackers have multiple compromised user’s information
{(A,B,y)i}ki=1. The attacker’s purpose is reversing x from the given
information (solution: x = (0,−5,−1, 2)).
1) GAVE: A · x+B · |x| = y
The 1st compromised (A1, B1,y1): y1 = (0, 5, 9,−32),

A1 =


7 2 −4 −8
−4 −5 8 −2
2 9 −1 5
−2 8 4 −9

 , B1 =


−3 7 −9 −2
−6 −5 1 8
2 9 −4 1
−1 3 7 4

 .

The 2nd compromised information: y2 = (−5, 16,−1,−9),

A2 =


−4 6 −9 1
1 2 −7 5
−8 −3 −5 2
5 −8 9 −4

 , B2 =


−6 3 −3 1
1 2 9 −5
−6 −8 7 4
2 −5 −1 −3

 .

Set t = (x1, x2, x3, x4, |x1|, |x2|, |x3|, |x4|), attackers can establish a
valid system of equations as follows:

7t1 + 2t2 − 4t3 − 8t4 − 3t5 + 7t6 − 9t7 − 2t8 = 0
−4t1 − 5t2 + 8t3 − 2t4 − 6t5 − 5t6 + 1t7 + 8t8 = 5
2t1 + 9t2 − 1t3 + 5t4 + 2t5 + 9t6 − 4t7 + 1t8 = 9
−2t1 + 8t2 + 4t3 − 9t4 − 1t5 + 3t6 + 7t7 + 4t8 = −32
−4t1 + 6t2 − 9t3 + 1t4 − 6t5 + 3t6 − 3t7 + 1t8 = −5
1t1 + 2t2 − 7t3 + 5t4 + 1t5 + 2t6 + 9t7 − 5t8 = 16
−8t1 − 3t2 − 5t3 + 2t4 − 6t5 − 8t6 + 7t7 + 4t8 = −1
5t1 − 8t2 + 9t3 − 4t4 + 2t5 − 5t6 − 1t7 − 3t8 = −9

(8)

By solving the system (8), attackers have the solution t =
(0,−5,−1, 2, 0, 5, 1, 2); they easily find out the user’s feature vector
x = (0,−5,−1, 2).
2) Variant of GAVE: A · u+B · |v| = y
The 1st compromised (A1, B1,y1): y1 = (−17,−57)

A1 =

[
−7 5
−4 8

]
, B1 =

[
2 3
−9 −4

]
.

The 2nd compromised information: y2 = (22, 27)

A2 =

[
2 −5
1 −8

]
, B2 =

[
−9 3
1 −7

]
.

Set t = (u1, u2, |v1|, |v2|), attackers can establish a valid system of
equations as follows:

−7t1 + 5t2 + 2t3 + 3t4 = −17
−4t1 + 8t2 − 9t3 − 4t4 = −57
2t1 − 5t2 − 9t3 + 3t4 = 22
1t1 − 8t2 + 1t3 − 7t4 = 27

(9)
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By solving the system (9), attackers have the solution t = (0,−5, 1, 2).
Even though adversaries cannot get exactly x due to absolute values, they
are able to compute precisely new transformed templates based on the
resultant vector t.

B. Absolute Value Equations Transform
Assume that attackers have multiple compromised user’s information
{(R,A,B,y)i}ki=1. Their purpose is obtaining x from the given in-
formation (solution: x = (0,−5,−1, 2)).
The 1st compromised (R1, A1, B1,y1): y1 = (51,−37)

R1 =

[
−3 1
2 4

]
, A1 =

[
−1 1
9 −2

]
, B1 =

[
4 6
−7 −2

]
.

The 2nd compromised information: y2 = (−54, 87)

R2 =

[
−6 −1
9 7

]
, A2 =

[
−4 3
−5 −2

]
, B2 =

[
−6 −3
8 9

]
.

The 3rd compromised information: y3 = (52, 27)

R3 =

[
−6 3
7 −2

]
, A3 =

[
−4 1
5 −6

]
, B3 =

[
2 3
8 −9

]
.

Attackers can only establish an underdetermined system of equations as
follows:

−1u1 + 1u2 + 4| − 3v1 + 1v2|+ 6|2v1 + 4v2| = 51
9u1 − 2u2 − 7| − 3v1 + 1v2| − 2|2v1 + 4v2| = −37
−4u1 + 3u2 − 6| − 6v1 − 1v2| − 3|9v1 + 7v2| = −54
−5u1 − 2u2 + 8| − 6v1 − 1v2|+ 9|9v1 + 7v2| = 87
−4u1 + 1u2 + 2| − 6v1 + 3v2|+ 3|7v1 − 2v2| = 52
5u1 − 6u2 + 8| − 6v1 + 3v2| − 9|7v1 − 2v2| = 27

(10)

Obviously, the system (10) is underdetermined so that it is computation-
ally hard to obtain the actual x.
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