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ABSTRACT
Federated learning (FL) allows multiple distrustful clients to collab-
oratively train a machine learning model. In FL, data never leaves
client devices; instead, clients only share locally computed gradients
with a central server. As individual gradients may leak information
about a given client’s dataset, secure aggregation was proposed.
With secure aggregation, the server only receives the aggregate gra-
dient update from the set of all sampled clients without being able to
access any individual gradient. One challenge in FL is the systems-
level heterogeneity that is quite often present among client devices.
Specifically, clients in the FL protocol may have varying levels
of compute power, on-device memory, and communication band-
width. These limitations are addressed by model-heterogeneous FL
schemes, where clients are able to train on subsets of the global
model. Despite the benefits of model-heterogeneous schemes in ad-
dressing systems-level challenges, the implications of these schemes
on client privacy have not been thoroughly investigated.

In this paper, we investigate whether the nature of model distri-
bution and the computational heterogeneity among client devices
in model-heterogeneous FL schemes may result in the server being
able to recover sensitive data from target clients. To this end, we
propose two attacks in the model-heterogeneous FL setting, even
with secure aggregation in place. We call these attacks the Conver-
gence Rate Attack and the Rolling Model Attack. The Convergence
Rate Attack targets schemes where clients train on the same subset
of the global model, while the Rolling Model Attack targets schemes
where model parameters are dynamically updated each round. We
show that a malicious adversary can compromise the model and
data confidentiality of a target group of clients. We evaluate our
attacks on the MNIST and CIFAR-10 datasets and show that using
our techniques, an adversary can reconstruct data samples with
near perfect accuracy for batch sizes of up to 20 samples.
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1 INTRODUCTION
In today’s world, a massive amount of data is generated from edge
devices, including phones, smartwatches, and various other Internet
of Things (IoT) devices [16, 37]. Therefore, it has become critical for
machine learning workloads to utilize the data that is distributed
across these edge devices. With traditional distributed machine
learning, clients upload their data samples to the central server,
and the server then trains on that data to generate a global model.
However, the traditional approach may not respect the privacy of
data samples, which may make it infeasible in practice [37]. In par-
ticular, many countries have data privacy and security laws, which
make it difficult for corporations to share sensitive information.
For example, the General Data Protection Regulation (GDPR) was
passed in the European Union (EU) to protect personal data of EU
citizens [1].

Due to these privacy concerns, a new decentralized approach
to machine learning, named federated learning (FL), was proposed
[37]. In FL, clients do not upload their training data to a central
server. Instead, they download a global model from the server,
perform local updates to the downloaded model, and send those
updates (e.g. gradients, model parameters) to the server. The server
then aggregates these updates into the global model for the next
round of training. Assuming that a particular client’s update does
not reveal information about the dataset used by that client, FL
would provide a reasonable level of privacy. Unfortunately, this as-
sumption does not hold in practice. A number of works have shown
that client privacy can be broken when the server has access to indi-
vidual client updates [9, 23, 62, 66, 69]. To provide stronger privacy
guarantees in FL, Bonawitz et al. [10] proposed secure aggregation.
With secure aggregation, the clients and server interactively run a
protocol such that the server learns the average update across all
clients without learning any individual client’s update.

Despite the numerous applications that FL enables [5, 6], there
are a number of practical challenges that are not addressed by the
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original FL protocol. One such challenge is the heterogeneity among
client devices. Data space heterogeneity occurs when clients collect
data from differing feature or label spaces and statistical hetero-
geneity occurs when the data collected by clients is not independent
and identically distributed (IID) [22, 49]. Furthermore, client de-
vices may have different computational resources, communication
bandwidths, and storage capacities. This is referred to as system
heterogeneity, and is very common in the IoT setting [35, 40, 64].
With system heterogeneity, devices with less computing power
generally train slower than devices with more computing power
[2, 38, 55]. Furthermore, devices that are limited in storage may not
be able to load the full global model into memory [22].

To address the challenges of having clients with different com-
pute power and communication bandwidths, various techniques
have been proposed. For example, client selection schemes ensure
that selected clients have sufficient computational resources [30, 42],
and asynchronous communication schemes [41, 53, 59] allow the
server to aggregate client updates as they come in. Even when these
techniques are used, however, clients must have enough compute
power and storage capacity to make updates to the full global model.
A newer line of work has shown that the local model architecture
may differ from the global model architecture [4, 18, 26]. This allows
clients to only train on a subset of the global model parameters,
based on their computational capabilities. Clients with similar com-
putational capabilities are grouped together into cohorts, and each
cohort trains on the same model parameters for a given round. This
approach, known as model-heterogeneous FL, has been gaining a
lot of research attention [22, 47, 61].

However, the implications of model-heterogeneous FL schemes
on client privacy have not been rigorously investigated. For exam-
ple, it is not clear if the model distribution pattern of these schemes,
combined with the heterogeneous compute power of client devices,
can be targeted by a malicious server to recover sensitive client
data. Furthermore, while secure aggregation has been extensively
studied in the model-homogeneous FL setting, to the best of our
knowledge, no prior works have investigated how client privacy
is impacted in model-heterogeneous FL schemes with secure ag-
gregation in place. Thus, we pose the following question in this
paper:

Can the adversarial server exploit characteristics of the model-
heterogeneous FL setting, hardened with secure aggregation, in order
to break the model and data confidentiality for a group of clients?

1.1 Our Contributions
We answer this question in the affirmative with two new attacks.
Our attacks demonstrate that unique aspects ofmodel-heterogeneous
FL schemes, like the differing computational power of clients or
the pattern of submodel distribution, can leak information to a
malicious server. We show that the server can exploit this leakage
to reconstruct data samples from targeted clients without needing
any auxiliary information about client datasets. Our contributions
can be elaborated as follows:

• Our first attack, hereafter referred to as the Convergence
Rate Attack targets schemes where cohorts are assigned
submodels that remain static across rounds.We show that the
server is able to exploit the fact that client devices converge at

different rates in order to recover individual gradient updates
from a target cohort. At a high level, the server chooses a
target cohort, 𝑝 , and waits for all cohorts with at least as
much compute power as 𝑝 to converge. Then, by issuing
malicious model parameters to cohort 𝑝 and leveraging the
fact that cohorts with less compute power than 𝑝 do not
contribute to cohort 𝑝’s submodel, the server is able to extract
the approximate plaintext gradient update from cohort 𝑝 .
Section 5.1 discusses this attack.

• Our second attack, hereafter referred to as the Rolling Model
Attack, targets schemes where clients train on different sub-
models each round (Section 5.2). These submodels are up-
dated either deterministically or randomly. We first show
how the server is able to extract model parameters for a tar-
get cohort associated with a single node. Then, we generalize
this attack to allow the server to obtain the entire gradient
update for the target cohort. We demonstrate that the server
can accurately extract a target cohort’s update after only two
rounds of training. We also investigate how the server can
add noise to malicious model parameters issued to clients,
in order to prevent clients from detecting that the attack
is in progress. We show that even when the server adds a
relatively large amount of noise, the attack accuracy remains
high. After obtaining a target cohort’s gradient update in the
clear, we show that the server can reconstruct data samples
associated with clients in the target cohort.

• We empirically evaluate the effectiveness of our attacks on
real world datasets (MNIST, CIFAR-10) by comparing our
reconstructions to the original images (Section 6). For the
Rolling Model Attack, we show that in the best case, a server
can reconstruct original data samples with near-perfect ac-
curacy for batch sizes of 20 or less. Similarly, for the Conver-
gence Rate Attack, we show that the best reconstructions
have Pearson correlation coefficients ≥ 0.87 with respect to
the original training samples.

• Finally, we discuss potential mitigations to our proposed
attacks, such as decentralization, adding hardware support,
differential privacy, and encryption, in Section 7.3. These
mitigations limit the amount of trust that clients must place
on the server.

• An open source implementation of our code can be found at
https://github.com/vt-asaplab/model-hetero-fl-attacks.

2 RELATEDWORK
2.1 Model-Heterogeneous FL
A number of works tackle the problem of system heterogeneity.
When the local model architecture of clients is the same as the global
model architecture, asynchronous updating and client selection
schemes may be beneficial. Recent works have shown that it is
feasible for clients to train on model architectures that differ from
the global model. This technique is known as model-heterogeneous
FL. Model-heterogeneous FL can be split into two main approaches.
The first approach leverages ensemble distillation in order to train
an accurate global model, while the second approach is based on
partial training of the global model.
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2.1.1 Ensemble Distillation. It was initially proposed as a way to
distill knowledge from an ensemble of teacher models to a stu-
dent model. In FL, various schemes have been proposed to transfer
knowledge from local client models to the global model. For ex-
ample, in schemes like FedDF [36], FedAUX [50], and FedBE [14],
the logit outputs from teacher models, held by clients, are used
in conjunction with an unlabeled public dataset to train a student
model on the server. The authors of FedGKT [24] and FedET [17]
extend traditional FL-based ensemble distillation schemes to permit
the server-side model to be larger than any single client model.

2.1.2 Partial Training. It is another approach tomodel-heterogeneous
FL. Partial training schemes assign different subsets of the global
model to clients, based on their computational resources, and clients
train on these submodels. During the aggregation phase, each global
parameter is averaged from the clients that contain that parameter
in their assigned submodel. In HeteroFL [18], the width of hidden
channels are scaled down according to the computational abilities
of clients. Similarly, FjORD [26] proposes a mechanism for dropping
out neurons in hidden layers for clients with less computational
power. Their approach, which they refer to as Ordered Dropout,
prunes neurons in a structured manner.

Both HeteroFL and FjORD distribute submodels in a static man-
ner, meaning that the model parameters assigned to a particular
cohort stay fixed across rounds. However, the parameters associ-
ated with client submodels may also vary based on the round. For
example, the Federated Dropout scheme [11] zeros out a fixed per-
centage of randomly selected activations for each fully-connected
layer. Then, during the distribution phase, clients receive only the
non-zero parameters. Similarly, FedRolex [4] proposes a rotating
submodel extraction scheme, where the model parameters assigned
to a client are deterministically updated across rounds. The authors
of Helios [60] propose a scheme where a fixed percentage of neu-
rons with the highest changing values are kept and a fraction of the
other neurons are dropped out. Since the neurons with the highest
changing values may differ by round, the model parameters issued
to clients are updated each round.

2.2 Gradient Inversion Attacks
2.2.1 Standard FL Setting. A number of works have shown that
given a client’s gradient update to the global model, information
can be leaked about that client’s private training dataset. Phong et
al. [48] were the first to show that the model parameters associated
with a neuron in a densely connected layer can reveal informa-
tion about the activations of the previous layer. Building on this
work, Zhu et al. [69] proposed an iterative optimization method to
reconstruct client data from publicly shared gradients. Zhao et al.
[66] extended this work by proposing a simple and reliable tech-
nique for extracting ground-truth labels from gradients. Geiping et
al. [23] and Yin et al. [62] proposed gradient inversion attacks in
more realistic settings, and showed that even averaging gradients
for varying batch sizes does not guarantee that client privacy is
protected. Boenisch et al. [9] proposed an adversarial initialization
scheme for the model parameters of the first fully-connected layer.
Through this technique, they were able to reconstruct individual
data points with high accuracy.

2.2.2 Privacy-Preserving FL Setting. All of the attacks in the stan-
dard FL setting assume that the server has direct access to gradients
from individual clients. However, recent works have demonstrated
that a malicious adversary can compromise the confidentiality of
clients even when privacy-preserving techniques, like secure aggre-
gation or differential privacy, are in place. Lam et al. [31] proposed
an analytical, matrix factorization approach designed to extract
private client gradients, despite secure aggregation being in place.
Their attack relied on side channel information, in the form of sum-
mary analytics about the participation rate of particular users in the
FL process. Pasquini et al. [45] proposed a model inconsistency ap-
proach to breaking the guarantees provided by secure aggregation.
In their work, the server carefully chooses which model parameters
to distribute to clients so that gradients are suppressed from all
but one target client. Finally, Boenisch et al. [8] proposed an attack
where a malicious aggregator can recover individual client gradi-
ents despite both secure aggregation and distributed differential
privacy being in place. Their attack relied on an adversary with
access to a large pool of sybil devices and with the capability to
select which clients participate in a given round of training.

3 PRELIMINARIES
Notation. Unless stated otherwise, capital letters denote sets and
machine learning models. The cardinality of a set 𝑋 is expressed
as |𝑋 |, and the intersection (∩), union (∪), and proper subset (⊂)
operators are used. Machine learning models are expressed as𝑊 ,
with additional subscripts/superscripts providing more information
on the specific model type. Given two machine learning models,
𝑊1 and𝑊2, where𝑊2 ⊂𝑊1,𝑊1 \𝑊2 refers to the submodel of𝑊1,
where all model parameters of𝑊2 are excluded. ∇ is used to define
a gradient update for a model𝑊 with respect to a loss function 𝑓 .
Bolded lowercase letters (e.g. x) denote vectors. ⌊𝑣⌋ denotes the floor
function applied to a scalar 𝑣 . We use · to denote the multiplication
operation, either between two scalar operands or between a matrix
and a vector.

3.1 Federated Learning
FL allows a set of 𝑛 clients to jointly train a global machine learning
model on decentralized data [37]. The FL protocol guarantees that
a given client’s private dataset never leaves that client. Instead,
each client sends their gradient update to a central server. The
standard FL protocol is organized into rounds. Before the first round,
the server randomly initializes weights for the global model,𝑊0.
Then, for each round, 𝑡 , the following steps take place. First, the
server samples a subset of 𝑘 ≤ 𝑛 clients, and distributes the global
model,𝑊𝑡 , to each of those 𝑘 clients. Next, each client minimizes
an objective function with respect to the global model𝑊𝑡 , based
on its local dataset. Finally, each client sends its gradient update
to the central server. Afterwards, the server updates the global
model based on the average gradient across all selected clients. This
process can be formalized as follows. For notational convenience,
the round index, 𝑡 , is dropped from Equation (1). 𝐺𝑖 denotes client
𝑖’s gradient update, 𝑋𝑖 denotes the set of training samples held by
client 𝑖 , and 𝑌𝑖 denotes the labels corresponding to 𝑋𝑖 . 𝑓 represents
the objective function that client 𝑖 is trying to minimize.𝐺 denotes
the average gradient update across all 𝑘 clients.
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𝐺𝑖 = ∇𝑊 𝑓 (𝑋𝑖 , 𝑌𝑖 ), 𝐺 =
1
𝑘

𝑘∑︁
𝑖=1

𝐺𝑖 (1)

Finally, the server computes𝑊𝑡+1, the global model for the next
round, according to a learning rate parameter 𝜂.𝑊𝑡+1 is computed
in the following manner:

𝑊𝑡+1 =𝑊𝑡 − 𝜂𝐺 (2)
Alternatively, clients can take a gradient descent step locally

and upload the resulting model to the server. The server can then
compute the new global model,𝑊𝑡+1, by averaging each of the
client models. When clients train on batches consisting of their
entire dataset for 1 local epoch, which we assume to be the case,
this aggregation technique is equivalent to that of Equation (2).
Concretely, let𝑊 𝑖

𝑡 denote client 𝑖’s local model after training. The
server can compute𝑊𝑡+1 by averaging the client models as follows:

𝑊𝑡+1 =

∑𝑘
𝑖=1𝑊

𝑖
𝑡

𝑘
(3)

Secure Aggregation. Bonawitz et al. [10] proposed secure ag-
gregation as a way to increase the privacy guarantees of the FL
protocol. With secure aggregation, clients do not send their individ-
ual updates to the server. Instead, the clients and server collectively
run a Secure Multiparty Computation (Secure MPC) protocol. The
server is different from clients, in that it holds no input, but can
communicate with clients through secure authenticated channels.
This protocol ensures that the server learns the aggregate update
across a set of 𝑘 clients without learning any individual client’s
update. The scheme proposed by Bonawitz et al. can be used by the
clients and server to jointly compute𝑊𝑡+1 in Equations (2) or (3).

3.2 Single-Input Gradient Leakage
Prior works have shown that the input to a densely connected neu-
ral network layer can be reconstructed through the gradients of the
model parameters for that layer. While the leakage is applicable to
arbitrary activation functions, we will focus on the ReLU activation
function, since it is commonly used in practice [7]. In particular,
consider the case when the first layer of a neural network is densely
connected. In that case, the original input can be reconstructed in
the following manner.

Let 𝑛𝑥 denote the size of the input layer and 𝑛𝑦 denote the size
of the first dense layer. Let x ∈ R𝑛𝑥 denote the flattened input, and
y ∈ R𝑛𝑦 denote the ReLU activation of x, computed as

y = max(𝑊 · x + 𝑏, 0)

for 𝑊 ∈ R𝑛𝑦×𝑛𝑥 and 𝑏 ∈ R𝑛𝑦 . Let the loss of the network be
represented by L. Now, consider a particular node, 𝑘 , in the first
dense layer, and let 𝑦𝑘 ∈ y represent its activated output. Assume
that 𝑦𝑘 > 0. Let𝑊𝑘 ∈ R1×𝑛𝑥 represent the weight vector between
the input layer and node 𝑘 , and let 𝑏𝑘 represent the bias term
associated with 𝑘 . Then, the gradients of L with respect to 𝑏𝑘 and
𝑊𝑘 can be computed as follows:

𝜕L
𝜕𝑏𝑘

=
𝜕L
𝜕𝑦𝑘

· 𝜕𝑦𝑘
𝜕𝑏𝑘

=
𝜕L
𝜕𝑦𝑘

   Server

①

①

Cohort 1

Cohort 2

①

Cohort 3

①

③

③

③

Local Training

Local Training

Global Model:

Secure Aggregation

②

Local Training

Client 1

Client 2

Client 3Local Training

Client 4

Training Round: j

Figure 1: Model-Heterogeneous Federated Learning System

since 𝜕𝑦𝑘
𝜕𝑏𝑘

= 1 for 𝑦𝑘 =𝑊𝑘 · x + 𝑏𝑘 .

𝜕L
𝜕𝑊𝑘

=
𝜕L
𝜕𝑦𝑘

· 𝜕𝑦𝑘
𝜕𝑊𝑘

=
𝜕L
𝜕𝑏𝑘

· x (4)

since 𝜕L
𝜕𝑦𝑘

= 𝜕L
𝜕𝑏𝑘

and 𝜕𝑦𝑘
𝜕𝑊𝑘

= x.

From equation (4), it follows that

x =

(
𝜕L
𝜕𝑏𝑘

)−1
· 𝜕L
𝜕𝑊𝑘

Hence, the input x can be reconstructed using gradient informa-
tion from the first densely connected layer.

4 MODEL
System Model. Our attacks consider a system model with two
main entities: 𝑛 client devices and a server. The clients and server
jointly participate in a FL protocol with secure aggregation in place.
Clients have differing computational power from each other, and
clients with similar computational power are grouped together
into cohorts. There are𝑚 ≤ 𝑛 different cohorts, where cohort 1
consists of clients with the most computational power, and each
cohort 𝑖 +1 has less computational power than cohort 𝑖 (1 ≤ 𝑖 < 𝑚).
Figure 1 illustrates the interaction between the parties in our system.
Training proceeds in synchronous rounds, similar to the standard
FL scheme [37]. A given round is considered complete after the
server receives the aggregated output for each of the submodels.
During each round, the server first distributes subsets of the global
model to clients, based on the cohort they belong to.

Then, as Figure 1 shows: 1○ Clients update the model locally
with respect to their training data. 2○ The clients and server run a
secure aggregation protocol to compute the average model update
across clients, which the server sets as the global model for the next
round. 3○ The server distributes subsets of the new global model
to all cohorts.
Threat Model and Assumptions.We consider the server to be
the adversary and clients to be trusted. The server’s goal is to
compromise model and data confidentiality of individual clients or
cohorts. In order to achieve this goal, it will suffice for the server to
learn a specific cohort’s aggregated gradient update or to extract an
individual client’s gradient update. This is because after obtaining
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an individual gradient update, the server can perform a gradient
inversion attack to reconstruct data samples [9, 23, 62]. The server is
malicious, meaning it can deviate from the FL protocol. Specifically,
the server may assign arbitrary model parameters (weights and
biases) to any number of cohorts during the distribution phase
(step 3○ in Figure 1). Note, however, that the server does not have
control over the model architectures. Therefore, the server is not
able to change the size of the submodels (i.e. the number of nodes
in hidden layers) issued to clients in a given cohort. Our threat
model is investigated in many prior works, including [9, 21, 23, 69].
Furthermore, a malicious adversary is a more realistic threat model
than a honest-but-curious adversary in most real-world settings.
For example, OpenMined and PyTorch recently released four new
libraries for FL [12]. These libraries allow malicious participants
to alter the parameters and even make minimal changes to the
architecture of the shared model.

5 THE ATTACKS
5.1 Convergence Rate Attack
Attack Scenario. Our first attack applies to static partial-training
based approaches, where clients train on the same segment of
the global neural network every round [20, 22, 61]. In this setting,
clients have different computational capabilities, and clients with
more computational resources generally train on a larger subset of
nodes than clients with less computational resources. A number of
works use the static partial training approach [13, 18, 26, 33, 34].
In [13, 18] clients are organized into cohorts (or groups), based on
their computational resources. In fact, each of these works can be
viewed as organizing clients into cohorts, since a cohort may, in
the extreme case, consist of a single client. We will focus on the
setting where submodels issued to the different cohorts are proper
subsets of one another. Without loss of generality, however, this
attack can be applied to other static partial-training schemes.

Suppose there are𝑛 clients, split into𝑚 ≤ 𝑛 different cohorts. The
model-heterogeneous FL process can then be described as follows.
(1) The server initially holds global model𝑊𝑗 . In the distribution
phase for round 𝑗 , the server issues submodel𝑊𝑖, 𝑗 to each cohort 𝑖 ,
1 ≤ 𝑖 ≤ 𝑚, where𝑊𝑖, 𝑗 is a subset of𝑊𝑗 and each𝑊𝑖+1, 𝑗 ⊂𝑊𝑖, 𝑗 . (2)
Each client 𝑘 computes its local gradient 𝐺𝑘 , and updates its local
model accordingly. (3) The clients and server participate in a secure
aggregation protocol. This protocol takes each trained client model,
𝑊 𝑘
𝑗
as input, and outputs𝑊𝑗+1, the global model for the next round.

Finally, steps (1) - (3) repeat until the final round of training.
Attack Details. To formulate our attack, we introduce the fol-
lowing notation. Let 𝑛1, 𝑛2, . . . , 𝑛𝑚 denote the number of clients in
cohorts 1, 2, . . . ,𝑚, such that 𝑛1 +𝑛2 + · · · +𝑛𝑚 = 𝑛. Let 𝐾 represent
the set of all clients and 𝑀 be a client-to-cohort mapping from
{1, . . . , 𝑛} → {1, . . . ,𝑚}. Further, let𝑊 𝑘

𝑖,𝑗
represent the submodel

held by client 𝑘 after local training that matches the architecture
of𝑊𝑖, 𝑗 , and 𝐺𝑘𝑖,𝑗 denote client 𝑘’s gradient update to𝑊𝑖, 𝑗 . If client
𝑘 belongs to cohort 𝑙 > 𝑖 ,𝑊 𝑘

𝑖,𝑗
= 𝐺𝑘

𝑖,𝑗
= 0, and 𝐺𝑘

𝑖,𝑗
will be ignored

in the aggregation process. This ensures that clients do not update
larger models than their computation or storage capabilities allow.

The average gradients for each submodel will be represented
by 𝐺𝑖, 𝑗 . Additionally,𝑊𝑖, 𝑗 :=𝑊𝑖, 𝑗 \𝑊𝑖+1, 𝑗 , and 𝐺𝑘𝑖,𝑗 := 𝐺

𝑘
𝑖,𝑗

\𝐺𝑘
𝑖+1, 𝑗 .

In the equations that follow, subscripts and superscripts may be
dropped when they are clear from the context. The global model
for the next iteration,𝑊𝑗+1, can be computed as follows:

𝑊𝑗+1 =𝑊𝑚,𝑗+1 ∪ (𝑊𝑚−1, 𝑗+1) ∪ · · · ∪ (𝑊1, 𝑗+1)

𝑊𝑖, 𝑗+1 =𝑊𝑖, 𝑗 − 𝜂𝐺𝑖, 𝑗
At a high level, the Convergence Rate Attack exploits the het-

erogeneity of client devices across cohorts. Some cohorts have
clients with much more computational power than other cohorts.
Therefore, cohorts with higher-end devices will reach convergence
quicker than cohorts with lower-end devices [2, 38, 55]. Specifically,
we assume that cohorts 1, 2, . . . ,𝑚 converge prior to the distribution
phase for rounds 𝑟1, 𝑟2, . . . , 𝑟𝑚 , where 0 < 𝑟1 ≤ 𝑟2 ≤ · · · ≤ 𝑟𝑚 ≤ 𝑡 ,
and 𝑡 is the total number of training rounds in the FL protocol.
Using this assumption, we show that we are able to extract the
aggregated output from individual cohorts.

Let 𝑝 denote the cohort which is targeted for convergence. At
the start of the training process, the server will hold model𝑊0.
Additionally, the server will hold a malicious model𝑊𝑚𝑎𝑙 , with
the same architecture as cohort 𝑝’s submodel,𝑊𝑝 . The model pa-
rameters of𝑊𝑚𝑎𝑙 will be chosen such that the server is able to
easily reconstruct data samples from clients in cohort 𝑝 , given this
cohort’s gradient update to𝑊𝑚𝑎𝑙 . This can be done, for example,
using the trap weights technique of Boenisch et al. [9]. Let 𝐺𝑚𝑎𝑙
denote any gradient updates to𝑊𝑚𝑎𝑙 . Also, let𝑊𝑚𝑎𝑙 and 𝐺𝑚𝑎𝑙
denote the submodels of𝑊𝑚𝑎𝑙 and𝐺𝑚𝑎𝑙 , respectively, where the
model parameters updated by cohort 𝑝 + 1 are excluded. The server
will initially distribute𝑊𝑖,0 to each cohort 𝑖 . Then, for each subse-
quent round, the server may assign arbitrary model parameters.
For rounds 1 ≤ 𝑗 ≤ 𝑟𝑝 − 1, the server will distribute subsets of
the true global model to all clients. Then, for round 𝑟𝑝 , the server
will distribute𝑊𝑚𝑎𝑙 to cohort 𝑝 instead of𝑊𝑝,𝑟𝑝 . All other cohorts,
𝑖 ≠ 𝑝 , will receive𝑊𝑖,𝑟𝑝 .

After local training, clients will hold the following submodels:

𝑊 𝑘
𝑖,𝑟𝑝

=


𝑖 = 𝑝, 𝑊𝑚𝑎𝑙 − 𝜂𝐺𝑘𝑚𝑎𝑙
𝑖 ≠ 𝑝, 𝑊𝑖,𝑟𝑝 − 𝜂𝐺𝑘

𝑖,𝑟𝑝

Next, the server will obtain𝑊𝑝,𝑟𝑝+1 from the secure aggregation
protocol. Since clients in cohorts ≥ 𝑝+1 do not contribute to𝑊𝑝,𝑟𝑝+1,
their updates will be ignored. Hence,𝑊𝑝,𝑟𝑝+1 can be expressed as:

𝑊𝑝,𝑟𝑝+1 =

∑𝑛
𝑘=1𝑊

𝑘
𝑝,𝑟𝑝

𝑛1 + 𝑛2 + · · · + 𝑛𝑝
(5)

The numerator in Equation (5) can be split into two parts, based
on whether𝑀 (𝑘) < 𝑝 or𝑀 (𝑘) = 𝑝 . Let 𝐾1 := {𝑘 ∈ 𝐾 | 𝑀 (𝑘) < 𝑝}
and 𝐾2 := {𝑘 ∈ 𝐾 | 𝑀 (𝑘) = 𝑝}. Equation (5) can be expressed as:∑

𝑘∈𝐾1 (𝑊𝑝,𝑟𝑝 − 𝜂𝐺𝑘𝑝,𝑟𝑝 ) +
∑
𝑘∈𝐾2 (𝑊𝑚𝑎𝑙 − 𝜂𝐺

𝑘
𝑚𝑎𝑙

)
𝑛1 + 𝑛2 + · · · + 𝑛𝑝

However, since all cohorts 𝑖 < 𝑝 have already converged, the gradi-
ent updates of the clients in these cohorts will be ≈ 0. Therefore,
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Figure 2: Convergence Rate Attack

the server will observe

𝑊𝑝,𝑟𝑝+1 =

∑
𝑘∈𝐾1 (𝑊𝑝,𝑟𝑝 ) +

∑
𝑘∈𝐾2 (𝑊𝑚𝑎𝑙 − 𝜂𝐺

𝑘
𝑚𝑎𝑙

)
𝑛1 + 𝑛2 + · · · + 𝑛𝑝

=

∑
𝑘∈𝐾1 (𝑊𝑝,𝑟𝑝 ) + 𝑛𝑝𝑊𝑚𝑎𝑙 − 𝜂 (

∑
𝑘∈𝐾2 𝐺

𝑘
𝑚𝑎𝑙

)
𝑛1 + 𝑛2 + · · · + 𝑛𝑝

(6)

Notice, however, that the server already knows𝑊𝑝,𝑟𝑝 for each client
in cohort 𝑖 < 𝑝 , since𝑊𝑝,𝑟𝑝 ⊂ 𝑊𝑖,𝑟𝑝 . The server also knows the
number of clients in each cohort, 𝑛𝑖 , for 1 ≤ 𝑖 ≤ 𝑚, as well as𝑊𝑚𝑎𝑙
and 𝜂. Finally, the server will obtain𝑊𝑝,𝑟𝑝+1 from the secure ag-
gregation protocol. Therefore, the server can solve Equation (6) for∑
𝑘∈𝐾2 𝐺

𝑘
𝑚𝑎𝑙

. This represents cohort 𝑝’s aggregated gradient update
to𝑊𝑚𝑎𝑙 , and can be used as the input to gradient inversion attacks,
like [9, 23, 62]. Therefore, the server will be able to compromise
the confidentiality of cohort 𝑝 .
Concrete Example. Consider the scenario shown in Figure 2,
where there are 3 cohorts in total and cohort 2 is targeted. The
server will initially hold global model𝑊0, and before the first round,
the server will distribute𝑊𝑖,0 to all cohorts 𝑖 , 1 ≤ 𝑖 ≤ 3. Then,
for all rounds 1 ≤ 𝑗 ≤ 𝑟2 − 1, the server will distribute the true
global model to all clients. For round 𝑟2, the server will distribute
inconsistent models to cohorts. Cohort 2 will be issued a malicious
model,𝑊𝑚𝑎𝑙 , while all other cohorts will be issued𝑊𝑖,𝑟2 . However,
by round 𝑟2, cohort 1 will have converged. Therefore, during the
local training phase, clients in cohort 1 will compute gradients of
approximately 0. Hence, when the server obtains𝑊2,𝑟2+1, it will
be able to directly observe cohort 2’s contributions to𝑊𝑚𝑎𝑙 . Using
cleverly selected model parameters, the server can invert cohort
2’s gradient update to reconstruct private data samples. Finally,
this attack can be repeated until the server learns the aggregated
gradient updates of all other cohorts.
Comparison to Model-Homogeneous FL. The Convergence
Rate Attack exploits the fact that different submodels are issued
to different cohorts. Hence, it may not work as well in the model-
homogeneous FL setting. For a similar attack to work in this set-
ting, the server has to wait for all clients to converge, and then
issue malicious model parameters to a target client. In the model-
heterogeneous FL setting, however, only the target cohort and all

cohorts with greater computational resources need to converge.
This is because cohorts with less computational resources than the
target cohort will not send updates to the target cohort’s submodel.

5.2 Rolling Model Attack
Attack Scenario. The Rolling Model Attack is present in the set-
ting where submodels issued to different cohorts overlap. Unlike
the static partial-training approaches described in Section 5.1, these
submodels do not stay fixed. Instead, they are modified, either de-
terministically or randomly, each round. For example, the Federated
Dropout scheme randomly drops out a fixed percentage of neurons
each training round [11]. Other schemes deterministically rotate
which nodes are selected for a particular cohort’s submodel. In
Helios [60], a fixed percentage of the neurons with the highest
changing values are kept, while a fraction of the other neurons are
dropped. In FedRolex [4], nodes are selected deterministically based
on the round index. For the remainder of this section, we will focus
on the deterministic rotating scheme proposed by FedRolex. With-
out loss of generality, however, this attack can be applied to other
deterministic and random submodel rotating schemes. Throughout
the discussion of this attack, we also assume that all cohorts train
on data from the same distribution.
Attack Details. We use the following notation to formulate this
attack. Suppose there are𝑛 clients split into𝑚 ≤ 𝑛 cohorts. Consider
a neural network,𝑊𝑗 , with a number of hidden layers. Take one
such hidden layer, indexed by ℎ, and let 𝜃ℎ represent the model
parameters (weights and biases) between layers ℎ − 1 and ℎ.

Each cohort updates a set of nodes that varies across rounds. Let
𝑛ℎ denote the total number of nodes in layer ℎ and let 𝛽𝑖 represent
the proportion of nodes in layer ℎ that cohort 𝑖 keeps. Additionally,
let 𝑆𝑖, 𝑗

ℎ
represent the node indices in layer ℎ that cohort 𝑖 updates

during round 𝑗 . The first and last node indeces are 0 and 𝑛ℎ − 1,
respectively. Finally, let 𝑗 = 𝑗 mod 𝑛ℎ . 𝑆

𝑖, 𝑗

ℎ
can be defined as follows:

𝑆
𝑖, 𝑗

ℎ
=


{ 𝑗, 𝑗 + 1, . . . , 𝑗 + ⌊𝛽𝑖𝑛ℎ⌋ − 1} if 𝑗 + ⌊𝛽𝑖𝑛ℎ⌋ ≤ 𝑛ℎ
{ 𝑗, 𝑗 + 1, . . . , 𝑛ℎ − 1} ∪ {0, . . . , 𝑗 + ⌊𝛽𝑖𝑛ℎ⌋ − 1 − 𝑛ℎ},
otherwise

Let 𝜃1, 𝑗
ℎ

, 𝜃2, 𝑗
ℎ

, . . . , 𝜃𝑚,𝑗
ℎ

denote different subsets of 𝜃ℎ for round 𝑗 ,
where parameters 𝜃𝑖, 𝑗

ℎ
are issued to cohort 𝑖 during round 𝑗 . Each

𝜃
𝑖, 𝑗

ℎ
consists of the parameters between nodes in layer ℎ − 1 and

nodes indexed by 𝑆𝑖, 𝑗
ℎ
. Note that |𝜃1, 𝑗

ℎ
| > |𝜃2, 𝑗

ℎ
| > · · · > |𝜃𝑚,𝑗

ℎ
|.

The Rolling Model Attack exploits the leakage caused by cohorts
changing which submodel they update across rounds. If cohorts
statically updated the same set of nodes, this vulnerability would
not be present. However, since cohorts rotate which nodes they
update, the number of cohorts that contribute to a given node
varies across rounds. In particular, one cohort may contribute to
a given node one round, but then not update that node during a
subsequent round. A malicious adversary can distribute the same
model parameter values to all cohorts for both rounds, thereby
obtaining the aggregated update of the cohort that dropped out.
Specifically, the attack can be formulated as follows. Let 𝑛1, 𝑛2,
. . . , 𝑛𝑚 denote the number of clients in cohorts 1, 2, . . . ,𝑚, such
that 𝑛1 + 𝑛2 + · · · + 𝑛𝑚 = 𝑛. The server holds global model𝑊0, and
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initially distributes subsets of𝑊0 to cohorts. Consider a particular
node, 𝑋 , in hidden layer ℎ, and let 𝜃𝑋 denote the set of all model
parameters between layer ℎ − 1 and 𝑋 . Let 𝐺𝑖, 𝑗

𝑋
denote cohort 𝑖’s

aggregate gradient update to 𝜃𝑋 for round 𝑗 . Due to the way that
submodels are selected, there must be a round, 𝑗 , such that 𝑋 ∈ 𝑆𝑖, 𝑗

ℎ

for all 𝑖 ∈ {1, 2, . . . ,𝑚 − 1} and 𝑋 ∈ 𝑆𝑖, 𝑗+1
ℎ

for all 𝑖 ∈ {1, 2, . . . ,𝑚}.
In particular, for 𝑗 = 0, 𝑋 is indexed by ⌊𝛽𝑚𝑛ℎ⌋. Suppose the server
chooses to distribute subsets of𝑊0 for both rounds 𝑗 and 𝑗 + 1.
Let𝑊𝑋 denote the subset of𝑊0 consisting of all model parameters
between layer ℎ − 1 and node 𝑋 . Then, the following system of
equations can be constructed:

𝐺
𝑗

𝑋
=

1∑𝑚−1
𝑝=1 𝑛𝑝

𝑚−1∑︁
𝑖=1

𝐺
𝑖, 𝑗

𝑋
, 𝜃

𝑗

𝑋
=𝑊𝑋 − 𝜂𝐺 𝑗

𝑋

𝐺
𝑗+1
𝑋

=
1
𝑛

𝑚∑︁
𝑖=1

𝐺
𝑖, 𝑗+1
𝑋

, 𝜃
𝑗+1
𝑋

=𝑊𝑋 − 𝜂𝐺 𝑗+1
𝑋

Note that 𝐺𝑖, 𝑗
𝑋

= 𝐺
𝑖, 𝑗+1
𝑋

for all 𝑖 , where 1 ≤ 𝑖 ≤ 𝑚 − 1, since
clients in those cohorts train on the same model with the same local
dataset for both rounds. The server can then compute 𝜃 𝑗+1

𝑋
− 𝜃 𝑗

𝑋
.

This difference can be expressed as:

𝜃
𝑗+1
𝑋

− 𝜃 𝑗

𝑋

= (𝑊𝑋 − 𝜂𝐺 𝑗+1
𝑋

) − (𝑊𝑋 − 𝜂𝐺 𝑗

𝑋
)

= 𝜂 (𝐺 𝑗

𝑋
−𝐺 𝑗+1

𝑋
)

= 𝜂

(
1

𝑛 − 𝑛𝑚

𝑚−1∑︁
𝑖=1

𝐺
𝑖,𝑗

𝑋
− 1
𝑛

𝑚∑︁
𝑖=1
𝐺

𝑖,𝑗+1
𝑋

)
= 𝜂

(
𝑛

𝑛 (𝑛 − 𝑛𝑚 )

𝑚−1∑︁
𝑖=1

𝐺
𝑖,𝑗

𝑋
− 𝑛 − 𝑛𝑚
𝑛 (𝑛 − 𝑛𝑚 )

𝑚∑︁
𝑖=1
𝐺

𝑖,𝑗+1
𝑋

)
=

𝜂

𝑛 (𝑛 − 𝑛𝑚 )

[
𝑛

𝑚−1∑︁
𝑖=1

𝐺
𝑖,𝑗

𝑋
− (𝑛 − 𝑛𝑚 )

(
𝑚−1∑︁
𝑖=1

𝐺
𝑖,𝑗+1
𝑋

+𝐺𝑚,𝑗+1
𝑋

)]
=

𝜂

𝑛 (𝑛 − 𝑛𝑚 )

[
𝑛𝑚

(
𝑚−1∑︁
𝑖=1

𝐺
𝑖,𝑗+1
𝑋

)
+ 𝑛𝑚 (𝐺𝑚,𝑗+1

𝑋
) − 𝑛 (𝐺𝑚,𝑗+1

𝑋
)
]

=
𝜂

𝑛 (𝑛 − 𝑛𝑚 )

[
𝑛𝑚

(
𝑚∑︁
𝑖=1
𝐺

𝑖,𝑗+1
𝑋

)
− 𝑛 (𝐺𝑚,𝑗+1

𝑋
)
]

=
𝜂

(𝑛 − 𝑛𝑚 ) (𝑛𝑚 (𝐺 𝑗+1
𝑋

) −𝐺𝑚,𝑗+1
𝑋

)

Observe that the server knows the values of 𝜃 𝑗+1
𝑋

, 𝜃 𝑗
𝑋
, 𝜂, 𝑛, 𝑛𝑚 , and

𝐺
𝑗+1
𝑋

. Therefore, the server can solve for 𝐺𝑚,𝑗+1
𝑋

to extract cohort
𝑚’s gradient update to node 𝑋 for round 𝑗 + 1.
Concrete Example. Consider the scenario shown in Figure 3. For
round 𝑗 , only cohorts A and B update the parameter represented
by 𝜃3. Then, during round 𝑗 + 1, cohorts A, B, and C all update 𝜃3.
Cohorts A and B have the same gradient update to 𝜃3 for rounds 𝑗
and 𝑗 + 1, because the server distributes the same model parameters
for both of these rounds. Therefore, the server can observe cohort
C’s update to 𝜃3 for round 𝑗+1 in the clear, by computing 𝜃3, 𝑗+1−𝜃3, 𝑗 .
Expanding the Attack Scope. The attack details in this section
explain how the server can extract the gradient update of cohort𝑚
to a target node 𝑋 in hidden layer ℎ. However, notice that clients
only know the architecture of the model they are issued – not the

0 1 2 3 4

Global Model

Round j

Round j+1

Cohort A Cohort B Cohort C

0 1 2 3 4

0 1 2 3 4

0 1 2 3 0 1 2

1 2 3 4 1 2 3

θ3, j += = +θ3, j+1 + θ3, j+1 - θ3, j =

Figure 3: Rolling Model Attack

values of the model parameters. Therefore, the server can deviate
from the distribution protocol, and assign arbitrary model parame-
ters to the target cohort. This capability allows the server to extract
the entire gradient update for cohort𝑚.

For example, consider the scenario when 𝛽𝑚−1 ≥ 2𝛽𝑚 and
⌊𝛽𝑚−1𝑛ℎ⌋ ≤ 𝑛ℎ . For round 0, the server will honestly distribute
model parameters. Then, for round 1, the server may distribute the
submodel associatedwith node indeces {⌊𝛽𝑚𝑛ℎ⌋, . . . , 2⌊𝛽𝑚𝑛ℎ⌋ − 1}
to cohort𝑚 and honest model parameters to all other cohorts. Since
2⌊𝛽𝑚𝑛ℎ⌋ ≤ ⌊𝛽𝑚−1𝑛ℎ⌋, all cohorts 𝑖 ≤ 𝑚 − 1 will update nodes
{⌊𝛽𝑚𝑛ℎ⌋, . . . , 2⌊𝛽𝑚𝑛ℎ⌋ − 1} for both rounds 0 and 1. Therefore, the
only change to the aggregate values of the model parameters asso-
ciated with these nodes will be cohort𝑚’s contribution. Thus, the
server will be able to extract cohort𝑚’s entire plaintext gradient
update for round 1.
Reducing the Attack Footprint. In the Rolling Model Attack, the
server must distribute the same model parameters to non-target co-
horts across rounds in order to recover the target cohort’s gradient
update. However, with this approach, clients can easily detect that
the server is acting maliciously, since they can observe that model
parameters do not change across rounds. Therefore, we investigate
the effect of adding noise to the malicious model parameters.

We add noise through the following procedure. For the first
round, the server initializes the model parameters in all layers to
a fixed value 𝑣 . Each subsequent round, the server observes the
average value of the global model parameters for each layer in the
network. Let 𝑎𝑣𝑔𝐿 denote this average value for layer 𝐿. The server
also maintains a constant value, 𝑝 , which affects the range of noise
to be sampled. The model parameters for layer 𝐿 are then initialized
according to a uniform distribution,U, of the following form:

U(𝑣 − 𝑎𝑣𝑔𝐿 · 𝑝, 𝑣 + 𝑎𝑣𝑔𝐿 · 𝑝) (7)

Note that in the Rolling Model Attack, the server is able to com-
promise the confidentiality of private training samples as early as
the second round of training. Therefore, the server may only need
to use the noisy initialization technique once.

471



RAID 2024, September 30–October 02, 2024, Padua, Italy Atharva Haldankar, Arman Riasi, Hoang-Dung Nguyen, Tran Viet Xuan Phuong, and Thang Hoang

6 EVALUATION
In this section, we evaluate the effectiveness of the Convergence
Rate Attack and the Rolling Model Attack.
Implementation. Our implementation was written in Python
3.9.18, and our code was interpreted using the Python runtime. We
added roughly 500 lines of code to the implementation of HeteroFL
[18]. We made use of the PyTorch library [46] for model initializa-
tion, distribution, and local training. We also used Matplotlib [27] to
help us visualize the original and reconstructed images. For model
distribution, we used an index array to track the model parameter
indices for each layer that should be assigned to a particular cohort.
Then, we assigned the corresponding entries of the layer based on
the index array. In the local training phase, clients took a single
gradient descent step with respect to the samples in their datasets.
We used the Adam optimizer. After local training, we simulated a
secure aggregation protocol. The inputs to the aggregation protocol
consisted of individual client models. These models were reshaped
to fit the global model architecture, and any parameters not trained
on were initialized with zeros. The aggregation protocol outputted
the average of the input client models. The server treated the ag-
gregation process as a black box. Our implementation is available
at https://github.com/vt-asaplab/model-hetero-fl-attacks.

6.1 Experimental Setup
Hardware Setup. We tested our attacks on a x86_64 virtual ma-
chine running CentOS Stream 9, with 8 cores, 32 GB of RAM, and
256 GB of disk space. To accelerate the training of the machine
learning models, we used a P40 Tesla server grade GPU. We utilized
NVIDIA’s CUDA Toolkit for GPU support. We spawned separate
threads for each client and the server.
System Setup.We placed clients into one of three cohorts: A, B, or
C. Cohort A received all model parameters during the distribution
phase. The other cohorts were issued models with scaled-down
hidden layers. Cohort B only received half of the model parameters
for each hidden layer in the network, and cohort C only received
a quarter of the parameters for each hidden layer. For the Conver-
gence Rate Attack, we ran our experiments with 5 active users, with
1, 1, and 3 users in cohorts A, B, and C respectively. Our choice
for the number of active users is similar to HeteroFL [18], where
10 active users were sampled per round. We placed more users in
cohort C to simulate a large number of resource-limited devices
training alongside fewer resource-rich devices. We targeted cohort
B for this attack. By targeting this cohort, we only needed to wait
for cohorts A and B to converge before running our attack. There-
fore, we were able to show that this attack is more effective in the
model-heterogeneous FL setting than in the model-homogeneous
FL setting. For the Rolling Model Attack, we ran our experiments
with 3 active users, with 1 client each in cohorts A, B, and C. The
plaintext gradient update observable by the adversary would still
be just as accurate with a larger number of users, as is explained by
the methodology of Section 5.2. We targeted the client in cohort C.
Data Distribution. We ran our experiments on the MNIST [32]
and CIFAR-10 [29] datasets. For the Convergence Rate Attack, we
ran our experiments in the non-IID setting, to simulate a practical
heterogeneous training environment [22, 64]. We trained in the IID
setting for the Rolling Model Attack, since this attack did not rely

Table 1: Global model architecture used in the experiments
on the MNIST dataset. The model size was scaled down based
on the computational resources of the cohort.

FCNN Architecture - MNIST
Linear(in_features=784, out_features=5000, bias=True)

ReLU()
Linear(in_features=5000, out_features=10, bias=True)

Table 2: Global model architecture used in the experiments
on the CIFAR-10 dataset. The model size was scaled down
based on the computational resources of the cohort.

FCNN Architecture - CIFAR-10
Linear(in_features=3072, out_features=15000, bias=True)

ReLU()
Linear(in_features=15000, out_features=10, bias=True)

on any convergence guarantees from the training process. In the
IID setting, each client held training data samples corresponding to
each of the labels of the dataset. However, in the non-IID setting,
each client was limited to holding data corresponding to two distinct
labels. The number of data samples per class was balanced. This
particular non-IID setup was also investigated in [4, 18].
Neural Network Model. We evaluated our attacks on a fully
connected neural network (FCNN) [9, 19]. The architecture for
this model is given in Tables 1 and 2 for the MNIST and CIFAR-
10 datasets, respectively. The model consisted of an input layer, a
hidden layer scaled based on the client’s computational capacity,
and an output layer. The ReLU activation function was applied
to the output of the hidden layer. As we chose to train on the
MNIST and CIFAR-10 datasets, the output layer consisted of 10
neurons, representing each of the ten classes that the images could
potentially belong to. We used the cross-entropy loss function.
Attack Parameters. For both attacks on the MNIST dataset, the
size of the hidden layer for cohorts A, B, and C was 5000, 2500, and
1250, respectively. For the Convergence Rate Attack, we targeted
the part of cohort B’s submodel that did not overlap with cohort C’s
submodel (see Section 5.1 for details). For the Rolling Model Attack,
we targeted the client in cohort C. Thus, for both attacks, the server
was able to observe the plaintext gradient update to 1250 nodes.
This attack surface is comparable to the trap weights architecture
of Boenisch et al. [9]. On the CIFAR-10 dataset, the hidden layer
consisted of 15,000 nodes. The larger number of hidden nodes was
chosen to adjust for the larger input size of 3072. For both attacks,
clients trained on small local dataset sizes of up to 20 samples for
1 local epoch with a batch size equal to the local dataset size. The
Convergence Rate Attack was conducted over 10 global epochs. By
running this attack for 10 global epochs, we observed that clients
in both cohorts A and B converged. The Rolling Model Attack was
run over 2 global epochs, since this was the minimum number of
epochs necessary for the server to successfully observe the plaintext
updates of the client in cohort C.

In order to simulate different cohorts having different computa-
tional power, clients in cohorts A, B, and C were assigned different
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learning rates. For both attacks, clients in cohorts A, B, and C had
fixed learning rates of 0.1, 0.05, and 0.01, respectively.
Evaluation Metrics. For both attacks, we first obtained individual
client gradients through the methodology described in Section 5.
Then, we performed an analytical gradient inversion attack, us-
ing leakage from the first dense layer of the network (See Section
3.2 for more details). We evaluated the accuracy of our image re-
constructions by using the Pearson correlation coefficient and the
peak-signal-to-noise ratio (PSNR) value between the reconstructed
image and the original image.

The Pearson coefficient is invariant against both scaling and
adding values by a constant, and can be used to show that there
is a linear relationship between target and reconstructed samples.
It ranges from -1, indicating a perfectly negative correlation, to
+1, indicating a perfectly positive correlation. PSNR is a metric to
evaluate the quality between an original and derived image. It is
measured in decibels (dB). The higher the PSNR value, the better
the quality of the derived image is relative to the original image.
Prior gradient inversion attacks in the standard FL setting use these
metrics [19, 58, 62]. We considered a reconstruction to be fully
revealing of the original input if the Pearson coefficient between
the two images was ≥ 0.98. This threshold accounts for floating-
point calculation errors and is in line with prior works [19].

For our experiments, these metrics were calculated in the fol-
lowing manner. First, from each of the rows in our weight gradient,
we were able to extract a single partial reconstruction of the target
image. We took the best partial reconstruction among all the images
in the target client’s local dataset. Then, we repeated this proce-
dure with 30 distinct seed values. The plots in Section 6.2 display
the maximum and average Pearson coefficients, PSNR values, and
number of completely leaked target images for these 30 trials.

6.2 Experimental Results
Rolling Model Attack. Figures 4 and 5 show the maximum and
average Pearson coefficients obtained from the 30 trials for the
MNIST and CIFAR-10 datasets, respectively. The best reconstruction
has a nearly perfect correlation with the original image across
varying local dataset sizes. Furthermore, the Pearson coefficient
for the averaged 30 trials also consistently remains above 0.78,
indicating a very close match. The PSNR values shown in Figure 6
are also quite high. The maximum PSNR value remains above 60 dB,
while the average PSNR value stays around 40 dB for both datasets.
This indicates that the quality of the reconstructed images is very
good relative to the original images in the client’s local dataset.
Figure 7 shows that the target images and reconstructions are close
to a perfect match.

Figure 8 shows that in the best case, all private training images
can be fully recovered, and in the average case, about half of all pri-
vate training images can be fully recovered for small local dataset
sizes of up to 10 images. As the local dataset size increases beyond
10 images, the percentage of fully revealed target images relative
to the size of the client’s local dataset tends to decrease. However,
it is important to note that reconstructions may leak a substan-
tial amount of information about the target image, despite being
classified as not fully revealing the original sample.
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Figure 4: Maximum and average Pearson correlation coef-
ficients, using 30 distinct seeds, for the best Rolling Model
Attack partial reconstructions on the MNIST dataset. Clients
trained for 1 local epoch using a batch size equal to the local
dataset size.

Convergence Rate Attack. Figure 9 shows the maximum and av-
erage Pearson coefficients for the Convergence Rate Attack across
30 trials. These coefficients are between 0.87 and 1.0 in the best
case and fall roughly between 0.6 and 0.8 in the average case. Fig-
ure 10 shows themaximum and average PSNR values across varying
local dataset sizes. This figure shows that the quality of the recon-
structions tends to decrease slightly as a client’s local dataset size
increases. Interestingly, the PSNR values for the CIFAR-10 dataset
appear to be higher than the PSNR values for the MNIST dataset.
In the best case for CIFAR-10, the best PSNR values stay above
70 dB, while on average these values remain higher than 20 dB.
For the MNIST dataset, the PSNR values exceed 15 dB in the best
case and remain above 12 dB in the average case. Figure 11 shows
the original images and best reconstructions for the images in the
local dataset of the target client in cohort B. While some of the
reconstructed images are a little blurry, one can easily tell that they
all represent the number 2. Furthermore, most of the features of
the images are preserved in the reconstructions (e.g. the loops in
the first two reconstructions).
RollingModel AttackNoise Addition.With the standard Rolling
Model attack, outlined in Section 5.2, the server distributes the same
global model parameters to each non-target cohort. However, this
technique is easily detectable by clients in these cohorts, since
they must simply observe that the global model is the same across
rounds. To address this problem, we investigated the effect of adding
noise to the distributed models. The initialization of the noised
model parameters follows the uniform distribution of Equation (7).
Figures 12, 13, and 14 show how the Pearson coefficient, PSNR
value, and number of completely leaked images, respectively, vary
as a function of the noise percentage, 𝑝 . As 𝑝 increases, it becomes
harder for clients to detect that the model parameters have been
maliciously initialized. We use a local training size of 10 for Figures
12, 13, and 14.

Figure 12 shows how the Pearson coefficients vary as the noise
percentage increases. As one might expect, when a larger percent-
age of noise is added, the Pearson coefficient tends to decrease.
However, even when the noise percentage is relatively substantial,
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Figure 5: Maximum and average Pearson correlation coeffi-
cients, using 30 distinct seeds, for the best Rolling Model At-
tack partial reconstructions on the CIFAR-10 dataset. Clients
trained for 1 local epoch using a batch size equal to the local
dataset size.
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Figure 6: Maximum and average PSNR values using 30 dis-
tinct seeds, for the best Rolling Model Attack partial recon-
structions. Clients trained for 1 local epoch using a batch
size equal to the local dataset size.

at 30%, the Pearson coefficient still remains above 0.95 in the best
case and dips just below 0.8 in the average case. Figure 13 shows
how the PSNR value is affected by the percentage of noise added.
This value remains above 20 and 15 dB, respectively, for the best
and average cases. Finally, Figure 14 shows the number of fully
recoverable images with varying levels of noise added. The same
Pearson coefficient threshold value of 0.98 is used for this figure,

Figure 7: Original images (top row) and their respective re-
constructions (bottom row) from the Rolling Model Attack.
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Figure 8: Maximum and average number of images fully
recovered, using 30 distinct seeds, for the best Rolling Model
Attack partial reconstructions. Clients trained for 1 local
epoch using a batch size equal to the local dataset size. An
image is classified as fully recovered if the Pearson coefficient
between the reconstructed and original image is ≥ 0.98.
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Figure 9: Maximum and average Pearson correlation coeffi-
cients, using 30 distinct seeds, for the best Convergence Rate
Attack partial reconstructions. Clients trained for 1 local
epoch using a batch size equal to the local dataset size.

and the maximum number of fully recoverable images is 10. As
Figure 14 shows, the number of images that are completely revealed
tends to decrease as the percentage of noise is increased. With a
noise percentage of 25 percent or higher, none of the reconstruc-
tions have a Pearson coefficient of 0.98 or higher with respect to
the target images. However, note that Figure 12 indicates that much
of the information contained in the target images is still leaked.

7 DISCUSSION
7.1 Root Cause of Vulnerabilities
We believe that the root cause of the vulnerabilities exploitable by
our proposed attacks is the power imbalance between clients and
the server. This sentiment is in line with the work of Boenisch et al.
[8]. Specifically, clients must trust the server to distribute the true
global parameters each round. Moreover, clients may not have an
easy way to detect that the server is acting maliciously. This power
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Figure 10: Maximum and average PSNR values, using 30 dis-
tinct seeds, for the best Convergence Rate Attack partial
reconstructions. Clients trained for 1 local epoch using a
batch size equal to the local dataset size.

Figure 11: Original images (top row) and their reconstructions
(bottom row) from the Convergence Rate Attack.
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Figure 12: Maximum and average Pearson correlation coef-
ficients, using 30 distinct seeds, for the best Rolling Model
Attack partial reconstructions on the MNIST dataset. Clients
trained for 1 local epoch using a batch size equal to the local
dataset size. The percentage of noise added is shown on the
x-axis.

imbalance allows the server to break the assumptions underlying
cryptographic primitives like secure aggregation.
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Figure 13: Maximum and average PSNR values, using 30 dis-
tinct seeds, for the best Rolling Model Attack partial recon-
structions on the MNIST dataset. Clients trained for 1 local
epoch using a batch size equal to the local dataset size. The
percentage of noise added is shown on the x-axis.
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Figure 14: Maximum and average number of images fully
recovered, using 30 distinct seeds, for the best Rolling Model
Attack partial reconstructions on the MNIST dataset. An
image is classified as fully recovered if the Pearson coeffi-
cient between the reconstructed and original image is ≥ 0.98.
Clients have local dataset sizes of 10, and clients trained for
1 local epoch with a batch size of 10. The percentage of noise
added is shown on the x-axis.

Model-Heterogeneous FL Setting. Aswe have shown, the model-
heterogeneous FL setting only exacerbates security issues present
in model-homogeneous FL. Specifically, the computational hetero-
geneity between clients and the method of submodel distribution
introduce additional vulnerabilities that are not exploitable in the
model-homogeneous FL setting.

For the Convergence Rate Attack in the model-homogeneous FL
setting, the server would need to wait for all clients to converge
before manipulating the global model for a target user. However,
in the model-heterogeneous FL setting, the server simply needs to
wait for the target cohort and all cohorts with more computational
resources to converge before the attack can be carried out. Since
the rate of convergence for different cohorts may be vastly differ-
ent [2, 38, 55], the Convergence Rate Attack can be implemented
potentially very early in the training process.
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Similarly, the Rolling Model Attack does not work in the model-
homogeneous FL setting. In this setting, each client updates the
entire global model. Therefore, there is noway for the server to form
a set of equations where an individual client’s gradient update can
be isolated. Conversely, with the rolling model scheme presented
in Section 5.2, the server is able to observe the aggregated value of
model parameters with and without the target client’s update.

7.2 Practicality and Impact of Attacks
Convergence Rate Attack Practicality. First, training in the
FL protocol continues until the global model converges [37, 44].
Furthermore, Zhou et al. [68] prove that model-heterogeneous FL
schemes converge to a stationary point, for both IID and non-IID
data, given a general smooth cost function. Finally, [38, 55] demon-
strate that clients with greater computational capabilities will likely
make more training progress than slower clients. These works
demonstrate that our assumptions for the Convergence Rate Attack
are valid and applicable to real-world settings.

The practicality of the Convergence Rate Attack increases sig-
nificantly when the computational discrepancy between clients is
large. When there is a lot of computational heterogeneity between
clients, the global epochs at which different cohorts converge will
vary more substantially than when clients all have similar com-
putational resources. Therefore, the server will be able to conduct
the Convergence Rate Attack earlier in the training process and
over more rounds. Hence, the Convergence Rate Attack is likely to
be most effective in the setting where various IoT devices partici-
pate in the FL training process. IoT devices are resource-limited in
terms of both compute power and on-device memory [28, 40, 64].
Therefore, when IoT devices train alongside mobile phones and
resource-heavy servers, the computational resources of client de-
vices will vary significantly.

IoT devices are already being used for various FL applications,
and their use is only expected to increase in the future [28, 64]. For
example, IoT devices have applications to healthcare. Today, smart
devices can be used to measure a patient’s heart rate, blood pres-
sure, glucose levels, etc. Using this data, IoT devices can participate
in FL protocols designed to train machine learning (ML) models for
patient monitoring and treatment. Another FL application for IoT
devices is with regard to the smart city. Specifically, IoT devices
collect data related to transportation, public safety, smart agricul-
ture, etc. This data can be used to help government officials make
better decisions with regard to infrastructure, disease prevention
and mitigation, etc. Smart homes also rely on IoT devices like smart
cameras, smart doorbells, and smart bulbs. These devices collect a
large amount of raw data, which can be used to train ML models.
Additionally, virtual assistants, like Siri and Alexa, have become
commonplace in many households. It may be valuable for IoT de-
vices in smart homes to collaboratively train ML models through a
FL protocol [64]. FL is responsible for enabling a multitude of impor-
tant IoT applications. Furthermore, due to the resource constraints
of IoT devices, it is quite plausible that these devices will participate
in model-heterogeneous FL schemes. Therefore, the Convergence
Rate Attack has broad implications to privacy.
Rolling Model Attack Practicality. The Rolling Model Attack
relies on fewer assumptions than the Convergence Rate Attack and

can also be conducted earlier. In fact, the Rolling Model Attack can
be used to reconstruct private data samples of a target client as early
as the second global iteration. This means that clients must be able
to detect that the server maliciously initialized model parameters
and abort from the FL protocol before the second round of training.
This is quite difficult, since clients have no way of knowing the
model updates of other clients. Furthermore, the server can add
noise to the distributed models, making it harder for clients to
detect malicious behavior. As was shown in Section 6.2, even a
relatively high noise percentage does not impact the server’s ability
to reconstruct data samples from a target client.

7.3 Potential Countermeasures
Countermeasures against the Convergence Rate Attack and Rolling
Model Attack involve reducing the power imbalance between clients
and the server. This can be achieved through decentralization of the
FL process, adding more hardware support, differential privacy, and
encryption of model parameters. With each of these techniques,
clients can limit the amount of trust they must place in the server,
thus reducing the power of the server.
Decentralization. First, decentralized schemes can be adopted
to reduce the dependence of clients on the central server. For
example, Shayan et al. propose a blockchain-based FL protocol
named Biscotti [52]. Biscotti uses the Proof-of-Federation protocol,
which is similar to Proof-of-Stake. However, the reliability of a
client with the Proof-of-Federation protocol is determined by the
quality of their model updates and their contribution to the con-
sensus process. To protect the privacy of individual client model
updates, Biscotti uses masking and secure aggregation. Wang et
al. propose BPFL, a privacy-preserving FL scheme that uses the
blockchain [56]. In BPFL, several different entities are involved,
including FL nodes, who download the global model and perform
local model updates, and model aggregation nodes, who aggre-
gate local model updates. BPFL also makes use of homomorphic
encryption for privacy-preserving model aggregation. However,
the expensive cryptographic protocols used in blockchain-based
algorithms may impose a large overhead. Furthermore, since clients
may be resource-limited in the model-heterogeneous FL setting, it
will be difficult for clients to perform intensive storage and compu-
tational tasks necessary for most blockchain schemes. Finally, since
clients in the model-heterogeneous FL setting may have non-IID
data, it is difficult to determine the quality of the model update for
a given client. Hence developing an efficient incentive mechanism
is a major challenge.
Secure Hardware Support. Another way that the power imbal-
ance between clients and the server can be reduced is to make
use of additional hardware support. Specifically, Trusted Execu-
tion Environments (TEEs) can be utilized to hide gradient updates
from the adversary. A TEE provides a strongly isolated secure
compartment for executing code, such that even privileged code
cannot gain access to the secure compartment. Hence, TEEs can
provide strong confidentiality and integrity guarantees. Mo et al.
[39] propose a privacy-preserving FL scheme using TEEs. To ad-
dress the memory constraints associated with TEEs, Mo et al. pro-
posed a greedy, layer-wise training and aggregation scheme. In
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their scheme, clients use TEEs for local training and the server uti-
lizes a TEE for aggregation. However, in the model-heterogeneous
FL setting, it may be difficult to use TEEs, since adding specialized
hardware to resource-constrained devices may be infeasible in prac-
tice. Furthermore, TEEs impose additional computational, memory,
and energy consumption overhead [39]. Therefore, the use of TEEs
would most likely worsen system heterogeneity issues present in
model-heterogeneous FL schemes.
Differential Privacy (DP). Another technique to prevent the
server from breaking the confidentiality of client updates is DP.
While centralized DP is incompatible with our threat model, since
it relies on a trusted server, Local DP (LDP) may be an effective way
to prevent the server from observing the gradients of target clients.
With LDP, clients perturb their local gradient updates before send-
ing these updates to the aggregator [67]. If clients add a sufficient
amount of noise to their local updates, the central server will be
unable to observe individual client gradients in the clear. However,
with any Local DP scheme, there is a tradeoff between privacy
and utility. When clients add a large amount of noise to their local
model updates, they can expect better privacy guarantees, but the
overall utility of the global model may be degraded. For example, in
complex machine learning models, the range of the weight values
at different layers may vary substantially. As many existing LDP
schemes assume that the range of these weights are fixed, the noise
is not adaptively modified for each layer. Hence, the utility of the
shared global model may be greatly degraded [54].

Another concern with Local DP is large resource consumption,
including communication and energy overhead. Specifically, the
degradation to global model utility may necessitate a larger number
of communication rounds between the clients and the server in
order for the global model to converge. Hence, the wall-clock time
necessary for model convergence may increase significantly [51].
In order to address the communication overhead, Wei et al. [57]
propose the communication rounds discounting (CRD) algorithm,
which allows the server to adjust the number of communication
rounds during training. This algorithm aims to achieve a good trade-
off between privacy protection and global model convergence.

Distributed DP (DDP) is another solution for addressing the
gradient leakage of individual clients. In DDP schemes, clients add
a small amount of noise to their individual updates. The amount
of noise added by clients is not sufficient to protect their local
model update from leaking sensitive information. However, when
combined with secure aggregation, the server is unable to extract
information from individual client updates [3]. While DDP schemes
provide better global model utility than LDP [15], the majority of
clients must be honest. If this assumption is violated, then the server
may be able to break the privacy guarantees of DDP schemes [8].
Furthermore, the server will still be able to distribute inconsistent
models to users in order to force the final aggregated value to be a
function of only a single target client’s private dataset [45].
Secure Computation. Finally, clients can choose to participate in
FL schemes where the output from secure aggregation is encrypted.
Due to this encryption, the server will never have access to the
aggregate update value, and will therefore be unable to compromise
the privacy of individual clients. A number of works [25, 43, 65]
propose such schemes. These schemes make use of homomorphic

encryption, which allows arithmetic operations to be performed
directly on ciphertexts. Hence, a central server is able to aggregate
the encrypted client updates without ever needing to decrypt these
updates. Zhang et al. [65] also incorporate verification into their
FL scheme. The verification step ensures that clients are able to
detect when the server falsifies the aggregated model. However,
homomorphic encryption schemes impose a large performance and
communication overhead. The authors of [63] show that FL schemes
with homomorphic encryption have significantly longer training
times and substantially more data transfer than FL schemes without
homomorphic encryption. Since clients in themodel-heterogeneous
FL settingmay have limited computational resources, homomorphic
encryption schemes may not be suitable to this setting.

7.4 Future Work
Better Mitigation Strategies. One direction of future work would
be to find more effective countermeasures against the Convergence
Rate and Rolling Model Attacks. While Section 7.3 discusses several
countermeasures that can be employed against these attacks, each
of the countermeasures has some drawbacks. Therefore, finding
low-overheadmitigations that do not degrade utility is an important
area for future work.
Increasing Attack Effectiveness. Another area of future work
would be to find ways to improve the effectiveness of our proposed
attacks. For example, our proposed attacks may be combined with
schemes that break secure aggregation in the model-homogeneous
FL setting, like [8, 45], in order to be more effective. One challenge
is to identify other ways that the computational and storage hetero-
geneity of client devices can be exploited by the aggregation server.
Another aspect of improving our attacks would be to reduce their
detectability. As such, an important area of future work would be
to investigate what noisy parameter initialization strategies can be
employed by the server to reduce the probability that clients detect
the server’s malicious behavior.

8 CONCLUSION
In this work, we propose two attacks that exploit characteristics of
the model-heterogeneous FL setting. By targeting the distribution
pattern of model-heterogeneous FL schemes and the heterogeneity
of client devices, we show that a malicious server can obtain the
plaintext gradient from a target cohort. We empirically demon-
strate the effectiveness of our attacks in allowing an adversary to
reconstruct data samples from a victim client. Finally, we discuss
potential countermeasures to our proposed attacks. We hope that
our work encourages researchers to improve the confidentiality
guarantees of existing model-heterogeneous FL schemes.
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