
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

An Efficient and Zero-Knowledge Classical
Machine Learning Inference Pipeline

Haodi Wang, Rongfang Bie, Thang Hoang

Abstract— Machine Learning as a Service (MLaaS) offers powerful data analytics services to clients with limited resources. However,
it still raises concerns about the integrity of delegated computation and the privacy of the server’s model parameters. To address these
issues, zero-knowledge Machine Learning (zkML) has been suggested for computation verifiability with privacy guarantee for ML
models. Nevertheless, the existing zkML schemes focus on only one classical ML classification algorithm or deep neural networks,
which may not achieve satisfactory accuracy or require large-scale training data and model parameters, thus limiting their usefulness in
certain applications.
In this paper, we propose ezDPS, an efficient and zero-knowledge scheme for classical ML inference that processes data in multiple
stages for improved accuracy. Unlike prior works, each stage of the ezDPS pipeline is based on a well-established classical ML
algorithm, including Discrete Wavelet Transformation, Zero-Score Normalization, Principal Components Analysis, and Support Vector
Machine. We design new gadgets to prove various ML operations effectively. Our implementation of ezDPS has been fully tested on
real datasets, and experimental results show that it is up to three orders of magnitude more efficient than generic circuit-based
approaches, while also maintaining greater accuracy than single ML classification approaches.

Index Terms—Classical Machine Learning, Zero Knowledge Proofs, Inference Pipeline.

✦

1 INTRODUCTION

Machine learning (ML) has become a promising paradigm
due to its ability to perform highly complicated tasks
in classification, object detection, pattern recognition, and
natural language processing. However, training a sophisti-
cated machine learning model requires a large amount of
resources and relative expertise, making it non-trivial for
individuals or small organizations to perform. To address
this issue, Machine Learning as a Service (MLaaS) has been
proposed in which a cloud server provides an API of ML
services for resource-limited clients to access. Despite recent
progress, it has been shown that existing MLaaS designs
have computation integrity issues.

In the following, we outline the main concerns of MLaaS
and the limitations of the existing solutions. Then we
present our research objective toward mitigating some of
these limitations.

1.1 Research Gap and Problem Statement
MLaaS provides a potential approach to alleviate the com-
puting limitations of the clients. Nevertheless, it is difficult
for the client to know whether the results she receives are
reliable responses. A reckless server may give out incor-
rect computation results by mistake. Moreover, a corrupted
server may arbitrarily manipulate or substitute the client
data to produce a malicious outcome. This computation in-
tegrity problem is especially essential in sensitive scenarios,

• Haodi Wang and Rongfang Bie are with the School of Artificial Intelli-
gence, Beijing Normal University, China.E-mail: whd@mail.bnu.edu.cn,
rfbie@bnu.edu.cn

• Thang Hoang is with Virginia Tech (corresponding author). Email:
thanghoang@vt.edu

Manuscript received xxx; revised xxx

e.g., medical diagnosis, intrusion detection, and financial
forecasting.

Some previous work utilized Verifiable Computation
(VC) to solve this integrity problem. VC requires the server
to generate a proof along with the ML inference results
and send them to the client. The latter can validate the
proof to check the correctness of the results [18]. However,
VC is insufficient in the MLaaS scenario because it only
guarantees the computation integrity but not the privacy
of the server. More concretely, the server in MLaaS utilizes
private datasets to train the models. Thus the model pa-
rameters contain private information of the server, which
may cost quantities of resources to acquire. Revealing the
model weights using VC violates the interests of the server.
To address this issue, it is viable to add the Zero-Knowledge
property to the VC method (zkVC [21]), which permits the
server to hide the model parameters when generating the
proof. However, due to the heavy computation overhead, it
is nontrivial to apply zkVC to MLaaS. Zhang et al. initiated
the first work [74] that utilized zkVC to solve the integrity
and privacy problems in ML prediction. In their design, the
server first commits to all the fixed model parameters after
training. The client can submit an image via the MLaaS in-
terface for classification service. Given the input, the server
computes the inference result and generates a proof using
zkVC, which permits the client to verify the inference result
regarding the inputs and the committed parameters without
obtaining any information about the model parameters.

There are some researches proposed in the literature of
zkML that are designed for single stage or simple models
[40], [43], [74]. However, in real-world applications, the data
is usually processed by several phases called ML pipeline
instead of a single inference algorithm. Thus, it is necessary
to design a zero-knowledge ML pipeline (e.g., composed

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

of denoising, normalization, feature extraction, and classi-
fication) to balance the model complexity and performance
under certain situations.

The objective of this paper is to design a zero-knowledge
scheme for an ML pipeline that comprises a complete ML
inference, including data denoising, normalization, feature
extraction, and classification. The clients can verify the infer-
ence results without knowing the private model parameters
at every processing stage.

1.2 Our Contributions

In this paper, we craft a reliable and efficient scheme for ver-
ifying the inference results from an outsourced ML pipeline.
The proposed scheme, called ezDPS, enables practical verifi-
cation with zero-knowledge confidentiality. Our design con-
sists of four main stages of a typical ML inference pipeline,
i.e., data denoising, feature extraction, and ML classification.
More concretely, we initialize these stages with established
classical ML algorithms, including Discrete Wavelet Trans-
formation (DWT) [67] and Normalization for preprocessing,
Principal Components Analysis (PCA) [71] for feature ex-
traction, and Support Vector Machine (SVM) [8] for classifi-
cation. These ML algorithms are widely adopted in various
applications [45], [46] due to their effectiveness. To the best
of our knowledge, this paper takes the first step toward
establishing a zero-knowledge ML inference pipeline. Our
concrete contributions are as follows.

• New gadgets for critical ML operations. We propose
several new gadgets to transform ML computation into
arithmetic circuits, e.g., exponentiation, absolute value,
max/min in an array, and square root computation (§4.1).
The gadgets can be utilized to prove our ML inference
pipeline and other ML operations such as deep learning.

• New zero-knowledge ML inference pipeline scheme.
Based on the proposed gadgets, we propose a new zero-
knowledge ML inference pipeline called ezDPS (§4.2).
Unlike the existing zkML schemes, ezDPS permits ef-
ficient and practical integrity proof for a complete ML
pipeline, including data preprocessing, feature extraction,
and classification. We design an optimal set of constraints
for each stage and present multiple optimizations to
reduce the model size, making ezDPS outperform the
baseline methods both in asymptotic and concrete per-
formance metrics. Note that our ezDPS is designed to
be compatible with any zkVC backend. Thus, the effi-
ciency can be further improved when a better zkVC is
adopted. We also provide a zero-knowledge proof-of-
accuracy scheme for validating the effectiveness of the
ML pipeline (§4.2.6).

• Formal security analysis. We illustrate the security
model and rigorously analyze the security strengths
of ezDPS. The rigorous security analysis shows that
ezDPS satisfies the definition of a zero-knowledge ML
inference pipeline (§5).

• Full-fledged implementation, evaluation, and compari-
son. We fully implement our ezDPS in Python and Rust
programming language (§6) and conduct comprehensive
experiments to evaluate the performance of our method
(§7). The experimental results on real-world datasets

demonstrate that ezDPS achieves one-to-three orders of
magnitude more efficiently than the baseline method in
all performance matrices (i.e., proving time, verification
time, and proof size).

Remark. In this paper, we focus on the verifiability of the
ML inference task and the privacy of the server model in the
integrity proof. Our technique does not permit client data
privacy, in which the client sends plaintext data to the server
for computation. This model is different from the standard
privacy-preserving ML inference (PPMLI) (e.g., [11], [19],
[35], [42], [54], [57]), which preserves the privacy of the client
and server against each other but not computation integrity
(see §9 for more details). To our knowledge, it is not clear
how to combine zero-knowledge with PPMLI efficiently
to enable both client and server privacy plus computation
integrity. We leave such an investigation as our future work.
Application use-cases. Our zkML inference scheme can be
found useful in various applications. First, it can be used
to enable proof-of-genuine ML services, in which the service
provider can prove that its ML model is of high quality,
and the inference result is computed from the same model.
Another application is a fair ML model trading platform
with try-before-buy, in which the buyer can attest to the ML
model quality before purchase, while the sellers do not want
to reveal their model first. Finally, our technique can par-
tially address the reproducibility problem in ML [26], where
some ML models are claimed to achieve high accuracy
without having a proper way to validate them. As for more
concrete examples, our zkML can be adopted in scenarios
including federal training of anti-money laundering models
[24], [25], artificial diagnoses [3], [72], and student learning
behavior analysis [73]. In these use cases, the model-holder
can prove the inference results without revealing the private
model parameters. In all, our technique can offer a solution
to this issue, in which the model owner can prove that there
exists an ML model that can achieve such accuracy (see
§4.2.6), and the verifier can verify that statement efficiently
in zero knowledge.
Improvements over the PETs’23 conference version. This
article is the extended version of [23], which concentrates
on the classical ML algorithms rather than the deep learning
methods. The classical ML pipeline provides better perfor-
mance for small or middle-sized datasets, which can also
effectively avoid possible overfit caused by deep learning
models. To prove the classical ML inference pipeline more
efficiently, we propose new gadgets as building blocks and
add various optimizations to reduce the size of the arith-
metic circuits. We also select three more suitable datasets
to evaluate our ezDPS. More concretely, the improvements
over the conference version include the following parts.
First, we focus on the classical ML pipeline and present
an efficient proving scheme for inference integrity upon
four main stages, i.e., Discrete Wavelet Transformation, Z-
Score Normalization, Principal Components Analysis, and
Support Vector Machines. These classical ML algorithms
have been widely adopted in various tasks and are capa-
ble of obtaining high accuracy without incurring possible
overfit. Second, from the algorithmic viewpoint, we propose
a new gadget for square root computation, which supports
more complicated computation in machine learning regions.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

The square root gadget can be effectively exerted on the
proving procedure of Z-Score Normalization. Moreover, we
also propose several optimizations of the ML pipeline based
on the new gadget to increase the accuracy of the ML
pipeline while reducing the model size. Finally, from the
experimental perspective, we have revised all the experi-
ments of our ezDPS scheme in the PETs’23 version with two
new datasets that are more appropriate for the classical ML
inference scenario. In our preliminary version, we reported
the performance of ezDPS on LFW and Cifar-100 image
datasets, e.g., the proving time, verification time, proof size,
and accuracy loss. Our method requires hundreds of min-
utes to prove and obtains relatively unsatisfying accuracy.
In this extended version, we fixed this issue by adopting
two new datasets, i.e., the British Birdsong and KDD-1999.
The revised experiments cost only several minutes to prove
and achieve over 90% accuracy with little accuracy loss. We
have released the improved source-code of our scheme for
public use and adaptation. The code is publicly available at

https://github.com/vt-asaplab/ezDPS/tree/extended ezDPS

2 PRELIMINARIES

Notations. For n ∈ N, we denote [1, n] = {1, . . . , n}. Let
λ be the security parameter and negl(·) be the negligible
function. We denote a finite field as F. PPT stands for Prob-
abilistic Polynomial Time. We use bold letters, e.g., a and
A, to denote vector and matrix, respectively. A⊤ means the
transpose of A. We write ab (or a ·b) to denote dot product
and A ◦ B to denote Hadamard (entry-wise) product. We
use

c≈ to denote that two quantities are computationally
indistinguishable.

2.1 Commit-and-Prove Argument Systems

Argument of knowledge. An argument of knowledge for
an NP relation R is a protocol between a prover P and a
verifier V , in which P convinces V that it knows a witness
w for some input in an NP language x ∈ L such that
(x,w) ∈ R. Let ⟨P,V⟩ denote a pair of PPT interactive
algorithms. A zero-knowledge argument of knowledge is
a tuple of PPT algorithms zkp = (G,P,V) that satisfies the
following properties.
• Completeness. For any (x,w) ∈ R and pp ← G(1λ), it

holds that
⟨P(w, pp),V(pp)⟩(x) = 1

• Knowledge soundness. For any PPT prover P∗, there exists
a PPT extractor E such that given the access to the
entire execution process and the randomness of P∗, E
can extract a witness w such that pp ← G(1λ), π∗ ←
P∗(x, pp), w ← EP∗

(x, π∗, pp) and

Pr [(x,w) /∈ R ∧ V(x, π∗, pp) = 1] ≤ negl(λ)

• Zero-knowledge. There exists a PPT simulator S such that
for any PPT algorithm V∗, auxiliary input z ∈ {0, 1}∗,
(x,w) ∈ R, pp← G(1λ):

view(⟨P(w, pp),V∗(z, pp)⟩(x)) c≈ SV
∗
(x, z)

where view(⟨·, ·⟩(x)) denotes the distribution of the tran-
script of interaction.

Commit-and-Prove zero-knowledge proof. Commit-and-
Prove (CP) Zero-Knowledge Proof (ZKP) permits the prover
to prove the NP-statements on the committed witness. Most
generic ZKP protocols support CP paradigm and the most
efficient CP-ZKP protocols harness the succinct polyno-
mial commitment scheme (e.g., [36]) to achieve succinct-
ness properties. The prover first commits to the witness w
using a zero-knowledge polynomial commitment scheme
before proving an NP statement, and the verifier takes
the committed value as an additional input for verifica-
tion. We denote the commitment algorithm for CP-ZKP
as cmw ← zkp.Com(w, r, pp), where r is the randomness
chosen by the prover.

In our framework, we use Spartan [59] (with Hyrax
[68] as the underlying polynomial commitment scheme)
as the backend zkPC-based CP-ZKP protocol. We choose
Spartan because it is a fully implemented zero-knowledge
proof scheme, which is transparent and supports generic
Rank-1 Constraint Systems. Spartan is also effective with
linear proving time, sub-linear verification time, and proof
size. Generally speaking, Spartan supports NP statements
expressed as R1CS, which shows that there exists a vector
z = (x, 1, w) such that Az ◦ Bz = Cz, where A,B,C are
matrices for the arithmetic circuits, x is the public input
(statement), w is the witness of the prover. All the witnesses
are encoded as a polynomial on the Lagrange basis. Since
it is easy to convert arithmetic statements into R1CS, our
main focus is to create arithmetic constraints for proving
algorithms in the ML pipeline efficiently that can be realized
with Spartan or any CP-ZKP backend.

Theorem 1 (Spartan ZKP [59]). Let F be a finite field and CF be
a family of the arithmetic circuit over F of size n. Under standard
cryptographic hardness assumptions, there exists a family of
succinct argument of knowledge for the relation

R = {(C, x;w) : C ∈ CF ∧ C(x;w) = 1}

where x and w are the public input and the auxiliary input to the
circuit C , respectively, and the prover incurs O(n) to O(n log n)
overhead, the verifier’s time and communication costs range from
O(log2 n) to O(

√
n) depending on the underlying polynomial

commitment schemes being used for multilinear polynomials.

Note that since Spartan is established on the polynomial
commitment schemes, it can support CP-ZKP paradigm.

2.2 Machine Learning Pipeline
ML pipeline is an end-to-end process that consists of mul-
tiple data processing phases to train an ML model from a
large-scale dataset effectively and to predict an inference
result for a new observation accurately [33]. Without loss of
generality, an efficient ML pipeline contains four main parts,
including data denoising, normalization, feature extraction,
and classification. The pipeline is illustrated in Figure 1. In
data denoising, raw samples xin ∈ Fm are collected, and
then some algorithm is used to reduce the impact of noise
in the collection environment. The output is denoted as
xdn ∈ Fm. Normalization takes xdn as input and generate
xnl ∈ Fm, which shifts and scales the data into a standard
distribution. Feature extraction extracts the most promi-
nent dimension of xnl so that only a small set of features
xfe ∈ Fk, k < m will be fetched for efficient computation

https://github.com/vt-asaplab/ezDPS/tree/extended_ezDPS

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

and a high convergence rate. Finally, the ML classification
algorithm trains upon xfe to simulate the data distribution
with a set of model parameters. After the training procedure
is completed, the classification model can predict the label y
for a new observation.

In this paper, we focus on the ML inference pipeline
(MLIP), in which the client collects raw data, and the server
processes the data in multiple stages (i.e., denoising, nor-
malization, feature extraction, ML classification) to obtain
the final inference result. At each stage, the server can
employ its private ML model parameters obtained from its
training pipeline to process the client data. We denote such
MLIP functionality as y ← Fmlip(w,xin), where xin ∈ Fm is
the data sample, w ∈ Fn is MLIP model parameters in all
stages, and y ∈ F is the inference result.

3 MODELS

System and threat models. Our system consists of two
parties, including the client and the server. The server holds
well-trained MLIP model parameters w and provides an
interface for the client to classify her data sample xin using
its model w.

We consider the client and server to mutually distrust
each other. The adversarial server can be malicious, in which
it may process the client’s query arbitrarily. On the other
hand, the client is semi-honest, in which she is curious about
the server’s model parameters. In this setting, we aim to
achieve inference integrity and model privacy. To enable
inference integrity, the server first commits to its model w.
Given a client request, the server computes the inference
result y along with a proof π to convince the client that the
result is indeed computed from the committed model rather
than an arbitrary answer. To ensure model privacy, the proof
π should not leak any information about the model w.

Formally speaking, a zero-knowledge MLIP is a tuple of
algorithms zkMLIP = (G,Com,P,V) as follows
• pp← zkMLIP.G(1λ, n): Given a security parameter λ and

a bound on the size of the MLIP model parameters n, it
outputs public parameters pp.

• cm← zkMLIP.Com(w, r, pp): Given MLIP parameters w,
it outputs a commitment cm under randomness r.

• (y, π) ← zkMLIP.P(w,xin, pp): Given MLIP model pa-
rameters w and a data sample xin, it outputs the inference
result y = Fmlip(w,xin) and the proof π.

• {0, 1} ← zkMLIP.V(cm,xin, y, π, pp): Given a commit-
ment cm, a sample xin, an inference result y, and a proof
π, it outputs 1 if π is the valid proof for y = Fmlip(w,xin)
and cm = Com(w, r, pp); otherwise it outputs 0.

Security model. We define the security definition of
zero-knowledge MLIP that captures inference integrity and
model privacy in the integrity proof as follows.

Definition 1 (zero-knowledge MLIP). A scheme is zero-
knowledge MLIP if it satisfies the following properties.
• Completeness. For any w ∈ Fn and xin ∈ Fm, pp ←
zkMLIP.G(1λ, n), cm ← zkMLIP.Com(w, r, pp), (y, π) ←
zkMLIP.P(w,xin, pp), it holds that

Pr [zkMLIP.V(cm,xin, y, π, pp) = 1] = 1

• Soundness. For any PPT adversary A, it holds that

Pr

pp← zkMLIP.G(1λ, n)

(cm∗,w∗,xin, y
∗, π∗, r)← A(pp)

cm∗ = zkMLIP.Com(w∗, r, pp)

zkMLIP.V(cm∗,xin, y
∗, π∗, pp) = 1

Fmlip(w
∗,xin) ̸= y∗

 ≤ negl(λ)

• Zero-knowledge. For any MLIP model w ∈ Fn and PPT
algorithm A, there exists simulator S = (S1,S2) such that

Pr

 A(cm,xin, y, π, pp) = 1

∣∣∣∣∣∣∣∣
pp← zkMLIP.G(1λ, n)

cm← zkMLIP.Com(w, r, pp)
xin ← A(cm, pp)

(y, π)← zkMLIP.P(w,xin, pp)

 c≈

Pr

 A(cm,xin, y, π, pp) = 1

∣∣∣∣∣∣∣∣
(cm, pp)← S1(1λ, n, r)

xin ← A(cm, pp)
(y, π)← SA2 (cm,xin, r, pp), given

oracle access to y = Fmlip(w,xin)

Out-of-scope attacks. Our security definition captures the
inference integrity and the model privacy in the integrity
proof π. There exist model stealing attacks [7], [65] that
target only the inference result y to reconstruct the model w.
In this paper, we do not focus on addressing such vulner-
abilities. It is because there exist independent studies that
address these vulnerabilities (e.g., [7], [32], [37], [41], [65])
and, with some efforts, they can be integrated orthogonally
into our scheme to protect w from both y and π. For exam-
ple, by simply limiting the inference result information (i.e.,
returning only the predicted label like our scheme currently
offers), it makes the attack become 50-100× more difficult
[65]. We elaborate on all these approaches in §8.

Our main goal is to ensure w is not leaked from π via
zero-knowledge so that the leakage from y can be sealed or
mitigated independently by these techniques.

We also do not consider model poisoning/backdoor
attacks (e.g., [55], [56]), in which the adversarial server may
target adversarial behaviors on certain data samples while
maintaining an overall high level of accuracy. Mitigating
such attacks requires analyzing the model parameters (e.g.,
[44], which may be highly challenging in our setting, where
the model privacy is preserved. Thus, we leave this threat
model as an open research problem for future investigation.

4 OUR PROPOSED ZERO-KNOWLEDGE MLIP
FRAMEWORK

In this section, we present the detailed construction of our
framework. We start by giving an overview.
Overview. Our ezDPS framework contains four processing
phases, including data denoising, normalization, feature
extraction, and ML classification, as shown in Figure 1.
We adopt ML algorithms for each phase including Discrete
Wavelet Transformation (DWT) [67] for data denoising, Z-
Score Normalization for normalization, Principal Compo-
nents Analysis (PCA) [71] for feature extraction, and Sup-
port Vector Machine (SVM) [8] for classification. We focus
on these algorithms because they were well-established in
various systems and applications with high efficiency [45],
[46]. ezDPS permits to verify a data sample was computed
correctly with DWT, SN, PCA, and SVM without leaking the
parameters at each phase including, for example, low-pass

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

Denoising
Feature

Extraction

Model

Training

Classification

{(𝐱in; 𝑦𝑖)}

𝐱in
′ 𝐱dn

′

𝑦

Model parameters

ML Training Pipeline

ML Inference Pipeline

𝐰3 𝐰4

(𝐱dn; 𝑦𝑖) 𝐱fe; 𝑦𝑖

𝐰1

Normalization
(𝐱nl; 𝑦𝑖)

𝐱nl
′ 𝐱fe

′

Denoising Normalization
Feature

Extraction

𝐰2

Fig. 1: A general ML pipeline.

and high-pass filters in DWT; mean vector and eigenvectors
in PCA; and support vectors in SVM.

In ezDPS, the server first commits to the model parame-
ters of each ML algorithm and provides an interface for the
client to process her data sample based on the committed
parameters. To demonstrate the validity of the committed
model, the server can publish a zero-knowledge Proof-
of-Accuracy (zkPoA) to demonstrate that the committed
model maintains a desirable accuracy on public datasets
with ground truth labels. zkPoA permits the client to attest
to the genuineness and the effectiveness of the server’s
committed model before using the inference service on her
data sample. zkPoA can be derived from zero-knowledge
proof of inference of individual samples. We show how to
construct zkPoA for our scheme in §4.2.6.

In the following sections, we first present new gadgets
for critical ML operations (e.g., max/min, absolute). Notice
that our proposed gadgets are not limited to the ML algo-
rithms selected above and can be used to prove other useful
ML kernels. We then present our techniques for proving
DWT, SN, PCA, and SVM more efficiently than the generic
approaches. Finally, we show how to construct a zkPoA
scheme to attest to the effectiveness of the committed model
on public datasets.

4.1 Gadgets

A gadget is an intermediate constraint system consisting of
a set of arithmetic constraints for proving a particular state-
ment in the higher-level protocols. We present the gadgets
that are needed in our ezDPS sheme, which can also be
applied to other ML algorithms. Note that in this section,
we first formalize the previously proposed permutation
and binarization gadgets as our building blocks, and then
present the gadgets that we designed.

4.1.1 Building Blocks

Permutation gadget [74]. Given two vectors v,v′ ∈ Fn,
Perm(v,v′) permits to prove that v is the permutation of
v′, i.e., v[i] = v′[σ(i)] for i ∈ [1, n] according to some
permutation σ. This can be done by showing that their
characteristic polynomial evaluates to the same value at a
random point α chosen by the verifier as

n∏
i=1

(v[i]− α) =
n∏

i=1

(v′[i]− α)

Due to Schwartz-Zippel Lemma [58], the soundness
error of the permutation test is n

|F| = negl(λ).
Binarization gadget . Given a vector v ∈ Fn and a value a ∈
F, binarization gadget Bin(a,v, n) permits to prove that v is
a binary representation of a. This can be done by showing
that {

v[i]× v[i] = v[i] for i ∈ [1, n]∑n
i=1 v[i] · 2i−1 = a

4.1.2 New Gadgets for Zero-Knowledge MLIP

Exponent gadget. Note that the idea to prove the expo-
nentiation was first proposed by Zhang et al. [74]. In this
paper, we present the concrete constraints and formulate
them in the gadget format. Given two values b, x ∈ F, we
propose a gadget Exp(b, a, x) to prove b = ax for public
value a ∈ F [74]. This can be done using the multiplication
tree and the binarization gadget (Bin). Let v ∈ Fn be an
auxiliary witness. It suffices to show that{

Bin(x,v, n)

b =
∏n

i=1(a
2i−1 · v[i] + (1− v[i]))

GreaterThan gadget. Given two values a, b ∈ F, we create
a gadget GT(a, b) to prove that a > b. The main idea is to
compute an auxiliary witness c := 2n + (a − b), where n is
the length of the binary representation of a and b, and show
that the most significant bit of c is equal to 1. Let c ∈ Fn+1

and a,b ∈ Fn be additional auxiliary witnesses. The set of
arithmetic constraints to prove a > b is

c = 2n + a− b
Bin(a,a, n)

Bin(b,b, n)

Bin(c, c, n+ 1)

c[n+ 1] = 1

Maximum/Minimum gadget. Given a value v ∈ F and an
array a ∈ Fn, we create a gadget Max(v,a) (resp. Min(v,a))
to prove that v is the maximum (resp. minimum) value in

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

TABLE 1: Notation table.

Variables Description
DWT components

xin ∈ Fm Sample input of size m to DWT
h, h̄ ∈ Fc low-pass filter of size c and its inverse
g, ḡ ∈ Fc high-pass filter of size c and its inverse
η Filter threshold

Z-Score components
xdn ∈ Fm Sample input of size m to Z-Score
ν mean of the data sample
κ standard deviation of the data sample

PCA components
xnl ∈ Fm Sample input of size m to PCA
x̄ ∈ Fm Mean vector
V = [vT

1 , ...,v
T
m] Eigenvectors

(λ1, ..., λm) Eigenvalues
k Size of PCA output

SVM components
xfe ∈ Fk Sample input of size m to SVM
ϕ kernel function
γ RBF kernel parameter
x
(ĉ)
i Support vectors for class ĉ

w(ĉ), b(ĉ) Weights and bias for class ĉ

y
(ĉ)
i ∈ {0, 1} Label of class ĉ

δ(ĉ) Coefficients of class ĉ in RBF kernel
f (ĉ) Decision function of class ĉ

Proof components
σ Permutation function
λ Security parameter
π Proof
w Witness
aux Auxiliary witness
cm Commitment
α, ᾱ, β Random challenges

a. The idea is to harness Perm and GT gadgets to prove that
v is equal to the first element of the permuted array of a,
whose first element is the largest (resp. minimum) value.
Specifically, to prove v = max(a), it suffices to show (i)
v = a′[1], (ii) a′[1] > a′[i] for all i ∈ [2, n], and (iii) a′ is the
permutation of a. Let a′ ∈ Fn be an auxiliary witness. The
set of arithmetic constraints to prove a maximum value in
an array is

GT(a′[1],a′[i]) for all i ∈ [2, n]

v = a′[1]

Perm(a,a′)

The constraints to prove a minimum value in an array
can be defined analogously.
Absolute gadget. Given a′, a ∈ F, we create gadget
Abs(a′, a) to prove that a′ is the absolute value of a, i.e.,
a = a′ or −a = a′. The idea is to compute c = a + 2n,
where n is the length of the binary representation of a, and
show that the most significant bit of c represents the sign
difference of a and a′. Let c ∈ Fn+1 and a ∈ Fn be auxiliary
witnesses, the set of arithmetic constraints to show that a′ is
the absolute value of a is

c = a+ 2n

Bin(a,a, n)

Bin(c, c, n+ 1)

c[n+ 1](a+ a′) + c[n+ 1](a− a′) = 0

SquareRoot gadget. Given a, b ∈ F, we propose gadget
Sqr(b, a) to prove that b is the square root of a, i.e., b =

√
a.

Due to the fixed-point representation in ZKP, there is a
difference between a and b2. The essential observation is
to harness the reverse square computation and a range
constraint, i.e., a − b2 is smaller than a small constant. Let
s, c ∈ F be the auxiliary witness, the set of constraints to
show that b is the square root of a is{

b2 + c = a

GT(1, s · c)

4.2 ezDPS Framework

We now give the detailed construction of our ezDPS scheme
with DWT, PCA, and SVM algorithms. We provide the
overview of each algorithm and show how to prove it with a
small number of constraints. We summarize all the variables
and notation being used for our detailed description in
Table 1.

4.2.1 DWT-Based Data Preprocessing

DWT [67] exerts the wavelet coefficients on the raw data
sample to project it to the wavelet domain for efficient
preprocessing. A DWT algorithm contains three main op-
erations, including decomposition, thresholding, and recon-
struction. The decomposition transforms the raw input from
the spatial/time domain to the wavelet domain consisting
of approximation and detail coefficients. The thresholding
is then applied to filter some detail coefficients, which
generally contain noise. Finally, the reconstruction is applied
to reconstruct the original data after noise reduction. Such
decomposition and thresholding processes can be applied
recursively until a small constant number of coefficients is
obtained. Let xin ∈ Fm be the input data sample of length
m, tℓ := m

2ℓ
, t′ℓ := m

2ℓ−1 . The DWT computes the frequency
component zℓ ∈ Ft′ℓ at the recursion level ℓ ≥ 1 as

zℓ[i] =
c∑

j=1

h[j] · zℓ−1[(2i+ j − 2)mod t′ℓ
]

zℓ[i+ tℓ] =
c∑

j=1

g[j] · zℓ−1[(2i+ j − 2)mod t′ℓ
]

(1)

for i ∈ [1, tℓ], where h,g ∈ Fc are low-pass and high-
pass filters respectively, and z0 = xin. The thresholding is
applied to compute high-frequency components (i.e., detail
coefficients) as

z′ℓ[i] = zℓ[i]

z′ℓ[i+ tℓ] =

{
sign(zℓ[i+ tℓ])(zℓ[i+ tℓ]− η) if |zℓ[i+ tℓ]| − η > 0

0 if |zℓ[i+ tℓ]| − η < 0

}
(2)

for i ∈ [1, tℓ], where η is the public threshold parameter,
sign(x) returns the sign of x (i.e., 1 if x ≥ 0, and −1
otherwise). The decomposition and thresholding can be
applied recursively until tℓ < c, or the number of rounds
reaches a set value. Finally, the reconstructed data x̂ℓ ∈ Ft′ℓ

at recursion level ℓ is computed as

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

x̂ℓ[2i− 1] =

c/2∑
j=1

(h̄[2j − 1] · z′ℓ[(i+ j − 1)mod tℓ] + h̄[2j] · z′ℓ[tℓ + (i+ j − 1)mod tℓ])

x̂ℓ[2i] =

c/2∑
j=1

(ḡ[2j − 1] · z′ℓ[(i+ j − 1)mod tℓ] + ḡ[2j] · z′ℓ[tℓ + (i+ j − 1)mod tℓ])

(3)

for i ∈ [1, tℓ], h̄, ḡ ∈ Fc are the coefficients of the inverse
low-pass and high-pass filters, respectively. In summary,
the DWT model parameters are h,g, h̄, ḡ, η. The size of
the model parameter is 4c + 1, where c depends on the
concrete DWT algorithm used in practice, e.g., c = 4 in DB-4
algorithm.
Proving DWT computation. We can see that (1) incurs
8m(1 − 1

2l
) constraints, where m is the length of the data

sample, l is the number of recursion levels. We propose
a novel method to prove DWT computation in a more
efficient way using our proposed split technique along
with the product of sums and random linear combination.
Our optimization reduces the complexity of proving the
decomposition and reconstruction from O(m) to O(logm).
Furthermore, if the recursion level l is set to a constant, the
complexity can be reduced toO(1). Specifically, we first split
each element in zℓ ∈ Ft′ℓ into two parts as

zℓ[i]
(1) =

c/2∑
k=1

h[2k − 1] · zℓ−1[(2k + 2i− 3)mod t′ℓ
]

zℓ[i]
(2) =

c/2∑
k=1

h[2k] · zℓ−1[(2k + 2i− 2)mod t′ℓ
]

zℓ[i+ tℓ]
(1) =

c/2∑
k=1

g[2k − 1] · zℓ−1[(2k + 2i− 3)mod t′ℓ
]

zℓ[i+ tℓ]
(2) =

c/2∑
k=1

g[2k] · zℓ−1[(2k + 2i− 2)mod t′ℓ
]

(4)

for i ∈ [1, tℓ]. Let α ∈ F be a random scalar chosen by the
verifier, the prover can prove (4) holds such that

tℓ∑
i=1

α
c
2+i−2zℓ[i] =

c/2∑
k=1

α
c
2−kh[2k − 1] ·

tℓ∑
i=1

αi−1zℓ−1[2i− 1]

+

c/2∑
k=1

α
c
2−k · h[2k] ·

tℓ∑
i=1

αi−1zℓ−1[2i] + (αtℓ − 1)

c
2−1∑
q=1

αq−1

·
q∑

p=1

(zℓ−1[2p]h[c− 2q + 2p] + zℓ−1[2p− 1]h[c− 2q + 2p− 1])

tℓ∑
i=1

α
c
2+i−2zℓ[i+ tℓ] =

c/2∑
k=1

α
c
2−kg[2k − 1] ·

tℓ∑
i=1

αi−1zℓ−1[2i− 1]

+

c/2∑
k=1

α
c
2−kg[2k] ·

tℓ∑
i=1

αi−1zℓ−1[2i] + (αtℓ − 1)

c
2−1∑
q=1

αq−1

·
q∑

p=1

(zℓ−1[2p]g[c− 2q + 2p] + zℓ−1[2p− 1]g[c− 2q + 2p− 1])

(5)

In (5), the number of constraints for proving DWT de-
composition is reduced from mc to c(c2−1)+4. To prove the

thresholding computation in (2), we employ the GT gadget,
such that for i ∈ [1, tℓ]:

GT(zℓ[i+ tℓ], η) for all z′ℓ[i+ tℓ] ̸= 0

GT(η, zℓ[i+ tℓ]) for all z′ℓ[i+ tℓ] = 0

z′ℓ[i]− zℓ[i] = 0

(6)

In our protocol, the prover provides |zℓ[i]| and sign(zℓ[i])
as the auxiliary witnesses so that the number of constraints
reduces from 5n + 14 to 3n + 9 for each zℓ[i + tℓ], where n
is the length of the binary representation of zℓ[i+ tℓ].

The final step is proving the DWT reconstruction, which
is analog to proving the decomposition. Let ᾱ ∈ F be a
random challenge chosen by the verifier. The prover can
prove DWT reconstruction in (3) such that

tℓ∑
k=1

ᾱ
c
2+i−2x̂ℓ[(2k + 1)mod t′ℓ

] =

c/2∑
k=1

ᾱ
c
2−kh̄[2k − 1] ·

tℓ∑
i=1

ᾱi−1z′ℓ−1[i]

+

c/2∑
k=1

ᾱ
c
2−kh̄[2k] ·

tℓ∑
i=1

ᾱi−1z′ℓ−1[i+ tℓ] + (ᾱtℓ − 1) ·
c
2−1∑
q=1

ᾱq−1

·
q∑

p=1

(
z′ℓ−1[p]h̄[c− 2q + 2p] + z′ℓ−1[p+ tℓ]h̄[c− 2q + 2p− 1]

)
tℓ∑

k=1

ᾱ
c
2+i−2x̂ℓ[(2k)mod t′ℓ

] =

c/2∑
k=1

ᾱ
c
2−kḡ[2k − 1] ·

tℓ∑
i=1

ᾱi−1z′ℓ−1[i]

+

c/2∑
k=1

ᾱ
c
2−kḡ[2k] ·

tℓ∑
i=1

ᾱi−1z′ℓ−1[i+ tℓ] + (ᾱtℓ − 1)

c
2−1∑
q=1

ᾱq−1

·
q∑

p=1

(
z′ℓ−1[p]ḡ[c− 2q + 2p] + z′ℓ−1[p+ tℓ]ḡ[c− 2q + 2p− 1]

)
(7)

We present a toy example in Figure 2 to further explain
our split technique. We denote by xdn the reconstruction
results in the last round of iteration.

4.2.2 Z-Score Normalization

Z-Score normalization is one of a widely adopted nor-
malization method in the machine learning literature. It
is utilized to adjust the data by shifting and scaling so
that all the data samples follow the normal distribution. Z-
Score normalization assist the ML pipeline to better extract
the features of the dataset and obtain a higher inference
accuracy. For each data sample xdn, Z-Score normalization
transform it into xnl ∈ Fm, such that

xnl =
xdn − ν

κ
(8)

where ν,κ are the mean and standard deviation of the
data, respectively.
Proving Z-Score normalization. The main obstacle in
proving the Z-Score normalization is the computation of
standard deviation, which incurs a square root operation.
More concretely, different from the integers, the square
root is nonequivalent to the inverse square computation
for fractional numbers in the finite field. To address this
issue, we harness the SquareRoot gadget Sqr in proving the
standard deviation. We also require the prover to provide

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

�1 �2 �3 �4 �5 �6

ℎ1 ℎ2 ℎ3 ℎ4

ℎ1 ℎ2 ℎ3 ℎ4

ℎ1 ℎ2 ℎ3 ℎ4

1 Direct Random
Linear Combination

2 Split
Technique

Input

DWT filter

�=1

3
�2+� �� = �3ℎ1 + �2ℎ2 + �ℎ3 + ℎ4 �1 + ��2 + �2�3 + … + �5�6 − �

�1 �3 �5

ℎ1 ℎ3

ℎ1 ℎ3

ℎ3 ℎ1

+

�2 �4 �6

ℎ2 ℎ4

ℎ2 ℎ4

ℎ4 ℎ2

�=1

3
�� �� = �ℎ1 + ℎ3 �1 + ��3 + �2�5

+ �ℎ2 + ℎ4 �2 + ��4 + �2�6

+ �1ℎ3 �3 − 1 + �2ℎ4 �3 − 1

16 muls in �

4 muls in total

��1 = � �1ℎ1 + �2ℎ2 + �3ℎ3 + �4ℎ4

�2�2 = �2 �3ℎ1 + �4ℎ2 + �5ℎ3 + �6ℎ4
�3�3 = �3 �5ℎ1 + �6ℎ2 + �1ℎ3 + �2ℎ4

12 muls

Input Input

DWT filter DWT filter

Fig. 2: Example of split technique applied to DWT decomposition vs. directly using random linear combination.

κ′ := 1/κ as the auxiliary witness, which also needs to be
proved. The set of arithmetic constraints to prove (8) is

ν ·m =
∑m

i=1 xdn,i

Sqr(κ, 1
m ·

∑m
i=1(xdn,i − ν)2)

xnl = (xdn − ν) · κ′

κ · κ′ + a = 1

GT(s′, a)

(9)

where a is the difference between κ · κ′ and 1 due to the
truncation error, which is supposed to be less than a small
constant s′.

4.2.3 PCA-Based Feature Extraction

PCA [71] is a method to reduce the dimensionality of the
data input by representing the most significant characteris-
tics of xnl ∈ Fm in a smaller feature vector with minimal
information loss (i.e., eigenvalues). The PCA training com-
putes a mean vector x̄ ∈ Fm for all data samples {x̂i}Ni=1

as x̄ =
∑

i x̂i

N , where N is the number of samples in
the training set. A covariance matrix is then computed as
S = 1

N

∑N
i=1(x̂i − x̄)(x̂i − x̄)⊤. The PCA training aims

at finding eigenvectors V = [v⊤
1 , . . . ,v

⊤
m] and eigenval-

ues (λ1, . . . , λm) of S such that S × V = V × Λ where
Λ = diag(λ1, . . . , λm). To reduce the dimension while
retaining the most information about data distribution, we
select k eigenvectors V′ = [v⊤

i1
, . . . ,v⊤

ik
] corresponding with

k largest eigenvalues (λi1 , . . . , λik). To this end, the server
retains the eigenvectors V′ and the mean vector x̄ as model
parameters. In the inference phase, given a new observation
x̂, the feature vector of x̂ can be computed via PCA as

x̃ = (x̂− x̄)×V′ (10)

Proving PCA computation. There are O(m · k) constraints
in (10), where m is the input dimension and k is the feature
vector dimension. We reduce the number of constraints of
proving PCA computation from O(m · k) to O(m) using the
random linear combination by using the powers of a ran-
dom challenge chosen by the verifier. This transformation
converts variables’ multiplication to constant multiplication,
where the latter comes for free in R1CS, therefore reducing
the computing complexity. Specifically, (10) is equivalent to

x̃[i] = (x̂− x̄)×V′[i] (11)

where i ∈ [1, k], V′[k] is the kth term in V′, e.g.,
V′[k] = v⊤

ik. Let α ∈ F be a random challenge chosen
by the verifier. We apply the random linear combination
to combine constraints in (11). Specifically, the prover can
prove (11) holds by proving that

k∑
i=1

αix̃[i] =
m∑
j=1

(
k∑

i=1

αiV′[i]

)
· (x̂[j]− x̄[j]) (12)

where αi is the power of the random challenge α computed
by the prover, V′ is the eigenvector and x̄ is the mean vector.

4.2.4 SVM Classification

SVM [8] is a supervised ML for classification problems
by finding optimal hyperplane(s) that maximizes the sep-
aration of the data samples to their potential labels. Sup-
pose the number of samples in the training set is N . Let
x1, . . . ,xN ∈ Fk be the feature vector of data samples
and y1, . . . , yN ∈ {1, . . . , s} be its corresponding label. To
deal with data non-linearity, kernel SVM projects xi to a
higher dimension using a mapping function Φ : Fm → Fm′

,
where m′ > m and applies a kernel function ϕ(xi,xj) =
Φ(xi) · Φ(xj) for training and classifying computation. Ra-
dial Basis Function (RBF) [8] ϕrbf(xi,xj) = e−γ·||xi−xj ||2 is
the most popular SVM kernel due to its effectiveness.

SVM was initially designed for binary classification, but
it can be extended to multiclass classification by breaking
down the multiclass problem into multiple one-to-rest binary
classification problems. For each class ĉ, data samples are
assigned to two classes, where y(ĉ)i = 1 if yi = ĉ, otherwise
y
(ĉ)
i = 0.

The trainable parameter of SVM is the tuple
(x

(ĉ)
i , δ

(ĉ)
i , bĉ), where for class ĉ, x(ĉ)

i is the support vector,
δ
(ĉ)
i is the coefficient, and b(ĉ) is the bias. The range of i

depends on |I(ĉ)| := |{i : δ(ĉ)i > 0}|, which equals to the
number of the support vectors for class ĉ. Note that δ(ĉ)i ≤ 0

are dropped during the training. The tuple (x
(ĉ)
i , δ

(ĉ)
i , bĉ)

acts as the secret of the prover, which will be committed to
prove the computation.

Given a new observation x̃ ∈ Fk, its label y can be
predicted as

y = argmax
ĉ

∑
i∈I(ĉ)

δ
(ĉ)
i y

(ĉ)
i ϕ(x̃,x

(ĉ)
i) + b(ĉ) (13)

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

Proving multi-class SVM classification with RBF kernel.
Suppose f (ĉ) =

∑
i∈I(ĉ) δ

(ĉ)
i y

(ĉ)
i ϕ(x̃,x

(ĉ)
i) + b(ĉ) is the de-

cision function’s evaluation for each class ĉ ∈ [1, s]. To
prove the SVM classification in (13), we harness Exp and
Max gadgets in §4.1 to prove the exponent in the RBF
kernel projection, and the class output being the maximum
value among all evaluations, respectively. We adopt the
representation in [74] where f (ĉ) is expanded to a value-
index pair, i.e., f := {(f (1), 1), (f (2), 2), . . . , (f (s), s)}. Let

f̄ := {(f̄ (1), σ(1)), (f̄ (2), σ(2)), . . . , (f̄ (s), σ(s))}

be the permutation of f , where σ(·) is the permutation
function such that f̄ (ĉ) = f (σ(ĉ)) and f̄ (1) is the maximum
value in f . The prover provides f̄ as the auxiliary witness
and shows that the output label y = σ(1). Let β be a
random challenge from the verifier, the prover binds each
value-index pair in f and f̄ to a single value as

p(ĉ) = f (ĉ) + β · ĉ, p̄(ĉ) = f̄ (ĉ) + β · σ(ĉ) (14)

and invokes a permutation check using Perm gadget,
where β is a random number chosen by V . Let l(ĉ)i ∈ F
for i ∈ I(ĉ), ĉ ∈ [1, s], [f̄ (1), . . . , f̄ (s)] be the auxiliary
witness used in the gadget Max. Suppose y is the claimed
output label and f (y) is the evaluation of the corresponding
decision function. Let p = {p(ĉ)} and p̄ = {p̄(ĉ)} be
intermediate vectors, where p(ĉ) and p̄(ĉ) are computed by
(14), respectively. The set of arithmetic constraints to prove
(13) is

k
(ĉ)
i = −γ||x̃− x

(ĉ)
i ||2 for i ∈ I(ĉ), ĉ ∈ [1, s]

f (ĉ) =
∑

i∈I(ĉ) δ
(ĉ)
i y

(ĉ)
i l

(ĉ)
i + b(ĉ) for ĉ ∈ [1, s]

Exp(l
(ĉ)
i , e, k

(ĉ)
i) for i ∈ I(ĉ), ĉ ∈ [1, s]

Max(f (y), [f (1), . . . , f (s)])

Perm(p, p̄)

f (y) + β · y = p̄(1)

(15)

Proving other SVM kernels. The RBF kernel achieves com-
petitive inference results, it requires heavy computational
resources for training all the model parameters. More impor-
tantly, the amount of support vectors significantly influences
the size of the arithmetic circuits. Hence a large number of
support vectors may lead to high proving/verification time
and large proof size. Fortunately, the RBF kernel can be
substituted by other SVM kernels for some datasets when
the distribution margins are clear or the number of samples
is large. These SVM kernels, e.g., the polynomial kernel and
Sigmoid kernel, are easier to be proved than the RBF yet
may cause lower accuracy [14]. Our techniques can be also
used to prove those kernels. Let c ∈ F be the output of the
kernel function. We present the constraints for other SVM
kernels as follows.
• Polynomial kernel. ϕply(xi,xj) = (γxT

i xj + α)β can be
proven with the following constraints{

γxT
i xj + α = b

Exp(b, β, c)
(16)

where b ∈ F is the intermediate value.

• Laplace kernel. ϕla(xi,xj) = e−γ′||xi−xj || can be proven
with the following constraints{

b = −γ′||xi − xj ||
Exp(c, e, b)

where b ∈ F is intermediate value.
• Sigmoid kernel. ϕsig(xi,xj) = tanh[α(xT

i xj) − β], where
α, β > 0 are hyper-parameters, can be proven with
following constraints

b = α(xT
i xj)− β

Exp(a1, e, b)

a1 · a2 = 1

c · (a1 + a2) = a1 − a2

where b ∈ F is the intermediate value, and a1, a2 ∈ F are
auxiliary witnesses.
RBF kernel approximation. Although some datasets can
alternatively use simpler kernels (e.g., polynomial kernel
as previously described), these kernels are insufficient in
complicated datasets and may result in low accuracy. To
this end, we further introduce an RBF kernel approximation
method as a trade-off between accuracy and proving effi-
ciency. Specifically, we adopt the Nyströem method [63] to
approximate the RBF kernel in SVM. The Nyströem method
is generally used for low-rank approximations of kernels.
The key insight is to carry out an eigendecomposition on a
small subset of the data and then expand the results back
to the original dimension. More concretely, the kernel-based
SVM projects each data sample xi to a higher dimension via
a kernel function ϕ(xi,xj) such that

ϕ(xi,xj) = Φ(xi) · Φ(xj) =
N ′∑
k

λkΦk(xi) · Φk(xj) (17)

where N < N ′ ≤ ∞. We slightly abuse the notation λi
to denote the eigenvalues of Φ(·). Equation (17) can be then
converted to

∫
ϕ(xj ,xi)Φk(xi)p(xi)dxi = λkΦk(xj) (18)

where p(xi) is the probability density of the input vector. To
approximate Equation (18), Nyströem method replaces the
integral over p(xi) by an empirical average given an i.i.d.
sample {x1, ...,xN ′′}, N ′′ < N ′ so that

1

N ′′

N ′′∑
m

ϕ(xj ,xm)Φi(xm) ≈ λkΦi(xj) (19)

Given a new observation xfe ∈ Fk, the prediction pro-
cedure is the same as Equation (13). However, due to the
approximation only adopting a part of the training samples,
the number of support vectors is smaller than the plain
SVM. Previous works have proved the effectiveness of the
Nyströem method [70]. The kernel in the approximation
can be heterogeneous. In our work, we choose the RBF
Nyströem approximation because of its high accuracy.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

Protocol 1 (ezDPS). Let λ be the security parameter.
• pp← ezDPS.G(1λ): Output pp← zkp.G(1λ)
• ĉm← ezDPS.Com(w, r, pp): Let w =

(h,g, h̄, ḡ, η, x̄,V′, {xi, δ
(ĉ)
i , b(ĉ)}i∈I(ĉ),ĉ∈[1,s], γ).

Compute ĉm ← zkp.Com(w, r, pp), where r is randomness
chosen by the server.

• (y, π)← ezDPS.P(w,xin, pp):
1) The server executes Algorithm 1 to compute y ←

DPS(w,xin), and commits to all the auxiliary wit-
nesses aux in (5), (6) (7), (9), (12), (15) as cm′ ←
zkp.Com(aux, r′, pp) under randomness r′ chosen by the
server.

2) Upon receiving the randomness α⃗ chosen by the client for
checking the random linear combination and maximum
value, the server invokes backend ZKP protocol to get
the proof as π ← zkp.P((w, aux),xin, y, pp). The server
sends (y, π) to the client.

• b← ezDPS.V(cm,xin, y, π, pp): Let cm = (ĉm, cm′), the
client invokes b← zkp.V(cm,xin, y, π, pp) and outputs b.

Fig. 3: Our ezDPS Protocol.

4.2.5 Putting Everything Together
We combine everything together and present the complete
algorithmic description of our ezDPS scheme in Protocol 1.
We describe the functionality (Algorithm 1) that processes a
data sample xin ∈ Fm with DWT (Figure 4, lines 1-15), ZS
(line 16), PCA (line 17), and SVM (lines 18-21), and returns
an inference result y.

4.2.6 Zero-Knowledge Proof of Accuracy
We construct a zkPoA scheme that is derived from the
inference of individual samples to attest to the effectiveness
of the committed model by demonstrating its accuracy over
public dataset D = (x1, . . . ,xM) with ground truth labels
T = (t1, . . . , tM). zkPoA requires the server to commit to
a model with claimed accuracy on public sources. Once
the model is committed and zkPoA is generated, it cannot
be altered. The server has to use the model that has been
committed previously for the successive inference tasks.
Let Y = (y1, . . . , yM) be the predicted labels of D, where
yi ← DPS(w,xi) for i ∈ [1,M]. The accuracy of MLIP

model over D is ψ =
ΣM

i=1(yi
?
=ti)

M where 0 ≤ ψ ≤ 1.
In our zkPoA, it suffices to show the committed model

maintains at least ψ accuracy (rather than the precise num-
ber) by proving that at least ψ · M samples are classified
correctly. This reduces the complexity since the prover does
not have to prove some samples are misclassified (which
incurs complex circuits for proof of inequality). Our zkPoA
is as follows.

We expand Y and T to value-index pairs as Y =
{(y1, 1), . . . , (yM ,M)}, T = {(t1, 1), . . . , (tM ,M)}. The
prover shuffles Y and T to Y′ and T′ using permutation
functions σ1, σ2, respectively, which have two goals: (i) hide
which samples are classified correctly, and (ii) reduce the
computation cost by rearranging correctly classified samples
as first items in Y′ and T′. Therefore, P needs to prove: (i)
first ψ ·M items in Y′ and T′ are identical, (ii)Y′ (resp. T′)
is a permutation of Y (resp. T), and (iii) two permutations
are the same.

Suppose the permuted sets are Y′ =
{(y′1, σ1(1)), . . . , (y′M , σ1(M))} and T′ =

Algorithm 1 (y ← DPS(w,xin)).
Input: Data sample xin ∈ Fm, MLIP model parameters
w = (h,g, h̄, ḡ, η, x̄,V′, {xi, δ

(ĉ)
i , b(ĉ)}i∈I(ĉ),ĉ∈[1,s], γ)

Output: Inference result y.
1: for ℓ = 1 to d do
2: tℓ ← m

2ℓ
and t′ℓ ← m

2ℓ−1

3: for i = 1 to tℓ do
4: zℓ[i]←

∑c
j=1 h[j] · zℓ−1[(2i+ j − 2)mod t′

ℓ
]

5: zℓ[i+ tℓ]←
∑c

j=1 g[j] · zℓ−1[(2i+ j − 2)mod t′
ℓ
]

6: for i = 1 to tℓ do
7: z′ℓ[i]← zℓ[i]
8: if |zℓ[i+ tℓ]| − η > 0 then
9: z′ℓ[i+ tℓ]← sign(zℓ[i+ tℓ])(zℓ[i+ tℓ]− η)

10: else
11: z′ℓ[i+ tℓ]← 0

12: for i = 1 to tℓ do

13: x̂ℓ[2i− 1]←
c/2∑
j=1

(h̄[2j − 1] · z′ℓ[(i+ j − 1)mod tℓ]

+h̄[2j] · z′ℓ[tℓ + (i+ j − 1)mod tℓ])

14: x̂ℓ[2i]←
c/2∑
j=1

(ḡ[2j − 1] · z′ℓ[(i+ j − 1)mod tℓ]

+ḡ[2j] · z′ℓ[tℓ + (i+ j − 1)mod tℓ])

15: xdn = x̂tl

16: xnl = (xdn − ν)/κ
17: xfe ← (xnl − x̄)V′

18: for ĉ = 1 to s do
19: Let I(ĉ) = {i : δ(ĉ)i > 0}
20: yĉ ←

∑
i∈I(ĉ) δ

(ĉ)
i y

(ĉ)
i ϕ(xfe,xi) + b(ĉ)

21: yc ← max(y1, . . . , ys)
22: return c

Fig. 4: MLIP with DWT, Z-Score, PCA and SVM algorithms.

{(t′1, σ2(1)), . . . , (t′M , σ2(M))}, where y′i = yσ1(i) and
t′i = tσ2(i). The prover provides Y′ and T′ as the auxiliary
witnesses. Let ξ be a random challenge chosen by the
verifier. To perform the permutation test, P computes
intermediate values Ỹ = {ỹi}, Ȳ = {ȳi}, T̃ = {t̃i} and
T̄ = {t̄i} such that for each i ∈ [1,M]:

ỹi = yi + ξ · i and ȳi = y′i + ξ · σ1(i)
t̃i = ti + ξ · i and t̄i = t′i + ξ · σ2(i)

The set of constraints for our zkPoA includes all the con-
straints to prove each yi plus the following constraints

y′i − t′i = 0 for i ∈ [1, ψ ·M]

σ1(i)− σ2(i) = 0 for i ∈ [1,M]

Perm(Ỹ, Ȳ)

Perm(T̃, T̄)

5 ANALYSIS

Complexity. Let m, k be the dimensions of the raw data
sample and the feature vector by PCA, respectively. Let s, t
be the number of SVM classes and the number of support
vectors for all classes, respectively. In DWT, our scheme
requires 8 log2

2m
c constraints for DWT decomposition (5)

and reconstruction (7), while the thresholding (2) incurs
(3n + 9)(m − c

2) constraints, where n is the size (in bits)
of each value per dimension of the raw data sample, c is
the dimension of the high-pass and low-pass filters. In total,

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

our scheme requires 16 + (3n + 9)(m − c
2) constraints for

proving DWT. In Z-Score normalization, the number of
constraints is 2(m + n1 + n2) + 11, where n1, n2 are the
different binary vector lengths to reduce the size of the
arithmetic circuit. In the real implementation, n2 is four
times larger than n1 since the scalars are scaled repeatedly
during the MLIP computation. In PCA, the number of
constraints is m (12). This is reduced from mk compared
with direct proving (10) due to random linear combination.
In SVM classification (15), the number of constraints is
composed of three parts: constraints for kernel projection,
decision function, and the final classification. More con-
cretely, ezDPS incurs t constraints for the decision function
and (3n+ 6)(s− 1) + 2s constraints for proving the classi-
fication. The permutation trick in our proposed Max gadget
permits us to reduce the number of comparisons from
O(s2) in generic circuits to O(s). The constraints for kernel
projection rely on the concrete kernel adopted. For RBF
kernel (both in plain SVM and Nyströem approximation),
ezDPS requires (2n+ k)t+ 2s constraints. For polynomial
kernel, ezDPS invokes (15 + k)t(s− 1) constraints in total.

For zkPoA, suppose the number of samples in the testing
dataset is M , and proving one testing data incurs N con-
straints. Therefore, our zkPoA incurs (N + 4)M constraints
for proving the accuracy.
Security. We analyze the security of our scheme. Specifi-
cally, we have the following theorem.

Theorem 2. Our ezDPS scheme in Protocol 1 is a zero-knowledge
MLIP as defined in Definition 1 given that the backend CP-ZKP
is secure by Theorem 1.

Proof of Theorem 2. We argue the completeness, soundness,
and zero-knowledge properties of our scheme as follows.
Completeness. The circuit in ezDPS.P outputs 1 if y is
the correct inference label of data sample x by Figure 4
on MLIP parameters w. The correctness of our protocol in
Figure 3 follows the correctness of the backend ZKP protocol
by Theorem 1.
Soundness. Let C be the arithmetic circuit that repre-
sents the computation of MLIP with DWT, PCA, and SVM.
By the extractability of commitment used by the backend
ZKP, there exists an extractor E such that given cm, it
extracts a witness w∗ such that cm = zkp.Com(w∗, r, pp)
with overwhelming probability. By the soundness of
zkMLIP in Definition 1, if cm = zkMLIP.Com(w, pp, r) and
zkMLIP.V(cm,x, y, π, pp) = 1 but y ̸= Fmlip(w,x), then
there are two scenarios:
• Scenario 1: w∗ = (w, aux) satisfying to
C((cm,x, y, r′);w∗) = 1. There are three cases for
this to happen: (i) w is not the one committed to cm
but passing the verification for cm; (ii) y is not the class
label corresponding with the maximum predicted value
among the auxiliary witnesses (f (1), . . . , f (s)) ∈ aux in
(15), but passing the max and permutation test; (iii)
Some witnesses in aux are not valid, but passing the
random linear combination test. The probability of the
first case is negligible in λ due to the soundness of
the commitment scheme used by the backend ZKP
protocol. As Max gadget relies on the permutation
test, its soundness error is negligible in λ due to the

Simulator 1 (Simulation of Protocol 1). Let λ be the
security parameter, F be a finite field, w with n values. Let
pp← ezDPS.G(1λ).
• ĉm ← S1(n, r, pp): S1 invokes Szkp to generate ĉm =
Szkp(n, r, pp) where r is randomness generated by SzkPC.

• (y, π) ← SA
2 (w,x, pp): S2 queries the oracle to get y ←

DPS(w,x). S2 shares all public input of C to Szkp and
invokes cmw ← Szkp.Com(pp). Upon receiving randomness
α⃗ from A, S2 invokes π ← Szkp.P(C, (ĉm,x, y, α⃗), pp), and
sends π to A.

• b ← A(cm,x, y, π, pp): Let cm = (ĉm, cmw), wait A for
validation.

Fig. 5: Simulator of Protocol 1.

soundness of the characteristic polynomial check, which
achieves the probability of s/|F| due to Schwartz-Zippel
Lemma [58]. Finally, the soundness error of the random
linear combination over a small number of constraints is
negligible in λ. By the union bound, the probability that
P can generate such w∗ is negl(λ).

• Scenario 2: w∗ = (w, aux) and C((cm,x, y, α⃗);w∗) = 0.
According to the soundness of the backend ZKP, given
a commitment cm∗, the probability that A can generate
a proof πw making V accept the incorrect witness is
negligible in λ.

In overall, the soundness of ezDPS holds except with a
negligible probability in λ.
Zero Knowledge. We construct a simulator for Protocol 1
in Figure 5 and show that the following hybrid game is
indistinguishable.
• Hybrid H0: H0 behaves as the honest prover in Proto-

col 1.
• Hybrid H1: H1 uses the real ezDPS.Com() in Protocol 1,

for the commitment phase, and invokes S to simulate the
proving phase.

• Hybrid H2: H2 behaves as Simulator 1.
Given the same commitment, the verifier cannot distin-

guish H0 and H1 due to the zero-knowledge property of the
backend zero-knowledge protocol, given the same circuit C
and public input. If the verifier can distinguish H1, and H2,
we can find a PPT adversary A to distinguish whether a
commitment of an MLIP with zero strings or not, which is
contradictory with the hiding property of the underlying
commitment scheme. Thus, the verifier cannot distinguish
H0 from H2 by the hybrid, which completes the proof of
zero-knowledge.

6 IMPLEMENTATION

We fully implemented our proposed framework in Python
and Rust, consisting of approximately 2,500 lines of code in
total. For DWT, we implemented the Daubechies DB4 algo-
rithm [67]. We used sklearn [53] to implement the Z-Score
normalization and the training phase of PCA and SVM. On
the other hand, we implemented the inference phase of PCA
and SVM from scratch to obtain all the witnesses to generate
the proofs. We used fixed-point number representation for
all the values being processed in our framework. Each value
can be represented by 64 bits, which reserves 1 bit for the
sign, 31 bits for the integer part, and 32 bits for the fractional

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

part. We set the dimension of the binary vectors in DWT
to be 64, which permits our zkMLIP scheme to be more
applicable for various scenarios.

We used the exponent gadget to prove the RBF kernel
of the form eγ||xi−xj ||2 , where the base eγ is public and
the exponent ||xi − xj ||2 is secret (witness). As shown in
§4.1, our gadget precomputes a2

i−1

, where a = e−γ and i is
the index of the binary representation of the exponent. To
reduce the size of the arithmetic circuit for the RBF kernel,
we use the polynomial kernel and Nyströem approxima-
tion, respectively, corresponding to the characteristics of the
datasets. We used a fixed-point arithmetic to represent the
exponent. Since it suffices to set γ = 10−3 for RBF kernel, we
used 20 bits to represent the fractional part of the exponent,
which suffices to cover most of the cases in our test set.
There are few samples that cause the fractional part of the
exponent to exceed 20 bits. In this case, we truncated the
fractional part of the witness that exceeds 20 bits, leading to
a small accuracy loss (see §7.4). The scalars in the finite field
grow larger when computation accumulates. We set n1 = 24
and n2 = 86 in proving the Z-score normalization.

In our implementation, we transformed the arithmetic
constraints and the witnesses generated from ML algo-
rithms into R1CS relations using the compact encoding
method in libspartan [60] and then invoked its library
APIs to create proofs and verification. Concretely, we used
SpartanDL scheme, which implements (i) Hyrax polynomial
commitment [68], (ii) curve25519-dalek [29] for curve
arithmetic in prime order ristretto group, (iii) a separate dot-
product proof protocol for each round of the sum-check pro-
tocol for zero-knowledge property, and (iv) merlin [13] for
non-interactive proof via Fiat-Shamir transformation. we
adapted Spartan to the commit-and-prove paradigm. The
high level is to split the commitment in the proof generation
of Spartan into two parts in such a way that once the client
verifies the proof, they can be combined together. More con-
cretely, let w1 ∈ FP be the model parameter and w2 ∈ FQ be
the witness being generated during inference computation.
The prover commits to the model as cm1 = Com(w′

1, r1),
where w′

1 = (w1||0Q) and || denotes vector concatenation.
During the inference computation, the server generates the
proof π using the model and the witness w = (w1||w2),
and shares with the client the commitment of the witness
computed as cm2 = Com(w′

2, r2), where w′
2 = (0P ||w2).

As π is generated based on (w1||w2), verifying π requires
the commitment cm = Com(w1||w2), which the client
can obtain by computing the homomorphic addition as
cm = cm1 ⊞ cm2. Our implementation is available at

https://github.com/vt-asaplab/ezDPS/tree/extended ezDPS

7 EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of ezDPS in
comparison with its counterparts on three public datasets
that are suitable for the classical ML inference pipeline. Our
main evaluation metrics are the proving time, verification
time, proof size, and accuracy loss. More concretely, we seek
to answer the following main questions.
• How is the performance of our ezDPS compared with the

generic circuits on three public datasets? (§7.2)

TABLE 2: Detailed model parameters.

KDD 1999 UCR-ECG British Birdsong
m k s t m k s t m k s t
30 20 4 55 750 57 4 173 169 120 8 150
30 20 8 126 750 60 8 300 169 40 16 270
30 22 16 750 750 56 16 360 169 140 32 450
30 23 23 1999 750 22 32 390 169 125 64 390

750 86 42 420 169 90 88 330
m: dimension of raw data, k: dimension of feature vector by PCA, s:
number of distinct class labels, t: number of support vectors in all classes.

• How is the detailed cost of each stage in ezDPS frame-
work? (§7.3)

• What is the accuracy loss of ezDPS compared with the
floating-point arithmetic, and what is the accuracy of
Nyströem approximation method? (§7.4)

We first describe the configuration and methodology to
conduct our experiments as follows.

7.1 Configuration

Hardware. We ran all the experiments on a 2020 Macbook
Pro, which was equipped with a 2.0 GHz 4-core Intel Core
i5 CPU, 16GB DDR4 RAM. Currently, we do not use thread-
level parallelization to accelerate the proving/verification
time. The experimental results reported in this section are
with single-thread computation, which can be further im-
proved once multi-thread parallelization is employed.
Dataset. We evaluated our scheme on three public datasets,
including the KDD CUP 1999 dataset [62], ECG dataset in
UCR Time Series Classification Archive (UCR-ECG) [12],
and the British Birdsong [61]. KDD CUP 1999 is a popular
network intrusion dataset used for The Third International
Knowledge Discovery and Data Mining Tools Competition,
which contains 395,216 data samples for 23 classes. UCR-
ECG contains 1800 records of ECG signals, each being of
length 750. British Birdsong contains 88 species of birdsong,
each audio is of length 169. We used the subset of each
dataset for the different number of classes. We selected these
datasets because they are more appropriate for the classic
machine learning pipelines. The models and our zkMLIP
scheme have been proven effective on these datasets, which
will be demonstrated in the following sections.
Parameters. We used standard parameters as suggested in
Spartan [59] (e.g., curve25519) for 128-bit security. We evalu-
ated the performance of our proposed methods with varied
numbers of classes (s) and PCA dimensions (k) (see Table 2).
For DWT processing, we set the number of recursion levels
to be 1 for noise reduction and η = 0.02 for processing
the detail coefficients. For the Z-Score normalization, we
set s in the SquareRoot gadget as 10−4, and s′ as 10−5.
For PCA, we selected the number of eigenvectors k such
that they can capture at least 90% of the variance. We
presented the concrete number of k w.r.t different sizes of
the datasets in Table 2. Finally, for SVM classification, we
use the polynomial kernel to substitute the RBF kernel for
the KDD 1999 dataset because the number of data samples
is sufficient. We set the bias of the polynomial kernel α = 0
and n = 4 in the Exponent gadget. Alternatively, we adopt
the Nyströem approximation method to replace the RBF,
which significantly reduces the number of support vectors.

https://github.com/vt-asaplab/ezDPS/tree/extended_ezDPS

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

22 23 24 25 26
50

100

150

200

250

classes (s)

P
ti

m
e

(s
ec

)
ezDPS Baseline

22 23 24 25 26
0.5

1

1.5

classes (s)

V
ti

m
e

(s
ec

)

ezDPS Baseline

22 23 24 25 26

600

800

1,000

1,200

classes (s)

Pr
oo

fs
iz

e
(K

B)

ezDPS Baseline

(a) UCR-ECG

23 24 25 26 27

100

200

300

400

500

classes (s)

P
ti

m
e

(s
ec

)

ezDPS Baseline

23 24 25 26 27
0.2

0.4

0.6

0.8

1

1.2

1.4

classes (s)

V
ti

m
e

(s
ec

)

ezDPS Baseline

23 24 25 26 27
400

600

800

1,000

1,200

1,400

classes (s)

Pr
oo

f
si

ze
(K

B)

ezDPS Baseline

(b) British Birdsong

Fig. 6: Performance of our scheme compared with the baseline.

Counterpart comparison. To our knowledge, we are the
first to propose a zero-knowledge MLIP. There is also no
prior work that suggests zero-knowledge proof for each
of the ML algorithms (i.e., DWT, Z-Score, PCA, and SVM)
in our framework. Thus, we chose to compare with the
naı̈ve approach, in which we hardcore the whole DWT,
Z-Score, PCA, and SVM computation into the circuit and
ran the same CP-ZKP backend (i.e., Spartan). We compared
ezDPS with this baseline to demonstrate our advantage in
reducing the proving time, verification time, and proof size.
We also report the accuracy of ezDPS to demonstrate the
advantage of ML pipeline processing.
Evaluation metrics. We assess the performance of our
scheme and the baseline approach in terms of proving time,
verification time and proof size (§7.2 and §7.3). We use the
given training and testing data in UCR-ECG, and adopt the
standard train-test split method in sklearn to separate the
training and testing samples. We set the testing ratio as 0.2.

7.2 Overall Results

ezDPS is two to four times more efficient than the baseline
in all metrics. More concretely, on the KDD-1999 dataset,
our proving time is from 4.8 to 660 seconds for 4 to 23
classes, respectively, which is 2 to 30 seconds less than the
baseline method. The use of the polynomial kernel in KDD-
1999 significantly reduces the number of support vectors.
For example, t = 1999 for 23 classes using the polynomial
kernel, and t = 11, 548 without the kernel optimization. The
gap between our ezDPS and the baseline is more significant
on UCR-ECG and British Birdsong datasets. For example,
on the UCR-ECG dataset, our proving time is from 72 to
98 seconds while the baseline method requires 118 to 239
seconds. For 8 classes on the British Birdsong dataset, our
method incurs 28 seconds of proving time and the generic
circuits require 46 seconds. For 88 classes, the proving time

using ezDPS is 70 seconds while it costs over 480 seconds if
using the baseline method. ezDPS can achieve over 1000×
faster in the proving time for larger datasets, e.g., the image
dataset LFW [28] we adopted in our prior work [23]. The
verification time and proof size follow the same trend as
the proving time. Specifically, ezDPS incurs 0.156 to 1.244
seconds for verification and 166 to 1306 KB of the proof
size on KDD-1999. As for the baseline, the verification
time is from 0.195 to 0.686 seconds and the proof size is
from 209 to 1367 KB. Our ezDPS achieves 2 times better
performance than the generic circuit on British Birdsong
and UCR-ECG. For instance, ezDPS requires 0.528 seconds
in verification and 564 KB of proof size for 88 classes on
British Birdsong, compared with 1.303 seconds and 1391
KB using the baseline method. We present the performance
comparison between our ezDPS and the baseline approach
in terms of proving time, verification time, and proof size, in
UCR-ECG and British Birdsong with different model sizes.

We can see the verification and bandwidth in ezDPS
are highly efficient, i.e., less than one second and 5 MB,
respectively, compared with the proving. This is because we
use Spartan as the CP-ZKP backend, which offers sublinear
verification and proof size overhead.

The concrete end-to-end computation latency and com-
munication in Figure 6 also confirm the efficiency improve-
ment of our optimization techniques. By introducing the
split technique and employing the random linear combi-
nation, the complexity is reduced from O(mc + mk) to
O(c2 + m), where c is a very small constant in practice
(e.g., c = 4 for Daubechies DB4 DWT). The most signifi-
cant improvement in the overall cost is achieved when the
number of classes is large. That is due to the employment
of Max and Exp gadgets in the SVM phase, which reduces
the complexity from O(s2) to O(s), which also explains the
relatively small performance gain on the KDD-1999.

Finally, we report the performance of zkPoA scheme

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

22 23 24 23
0

200

400

600

classes (s)

P
ti

m
e

(s
ec

)
DWT Z-Score PCA SVM-Poly

22 23 24 23
0

0.5

1

1.5

classes (s)

V
ti

m
e

(s
ec

)

DWT Z-Score PCA SVM-Poly

22 23 24 23
0

0.5

1

·103

classes (s)

Pr
oo

fs
iz

e
(K

B)

DWT Z-Score PCA SVM-Poly

(a) KDD-1999

22 23 24 25 42
0

50

100

classes (s)

P
ti

m
e

(s
ec

)

DWT Z-Score PCA Nyströem

22 23 24 25 42
0

0.2

0.4

0.6

0.8

1

classes (s)

V
ti

m
e

(s
ec

)

DWT Z-Score PCA Nyströem

22 23 24 25 42
0

200

400

600

800

classes (s)

Pr
oo

fs
iz

e
(K

B)

DWT Z-Score PCA Nyströem

(b) UCR-ECG

23 24 25 26 88
0

20

40

60

80

classes (s)

P
ti

m
e

(s
ec

)

DWT Z-Score PCA Nyströem

23 24 25 26 88
0

0.2

0.4

0.6

0.8

1

classes (s)

V
ti

m
e

(s
ec

)

DWT Z-Score PCA Nyströem

23 24 25 26 88
0

200

400

600

classes (s)
Pr

oo
fs

iz
e

(K
B)

DWT Z-Score PCA Nyströem

(c) British Birdsong
Fig. 7: Detailed cost of ezDPS.

23 24 25 26 27

0.5

1

1.5

2

2.5

3
·104

classes (s)

P
ti

m
e

(s
ec

)

ezDPS Baseline

23 24 25 26 27
0

20

40

60

80

100

classes (s)

V
ti

m
e

(s
ec

)

ezDPS Baseline

Fig. 8: Performance of zkPoA on British Birdsong.

proposed in §4.2.6. Since zkPoA is derived from the proof
of inference for individual samples, our scheme maintains
the same ratio of performance gain over the baseline as
reported in §7.2. Concretely, we tested zkPoA on the British
Birdsong dataset with 64 samples. As shown in Figure 8, we
achieve 1.6× to 6.8× faster on the proving time and 1.4× to
2.5× better performance on the verification time and proof
size. The complexity of zkPoA is linear with the number of
samples, and its main overhead stems from the inference
proof of individual samples.

7.3 Detailed Cost Analysis

We dissected the total cost of our scheme to investigate the
impact of each data processing on the overall performance.

Figure 7 presents the detailed cost of ezDPS with three
datasets. In ezDPS, the sample was processed in four
phases, including DWT noise reduction, Z-Score normaliza-
tion, PCA feature extraction, and SVM classification.
•DWT Processing: The cost of DWT processing is stable
when varying the number of classes (s) and contributes
a considerable portion to the overall performance. This is
because the complexity of DWT is independent of s, i.e.,
O(mn), which is bigger than PCA (i.e., O(m)), but smaller
than SVM (i.e., O((n + k)t + ns)) for a large number of
classes. On the KDD-1999 dataset, the proving time is
around 2.21 seconds, and the verification time and proof size
are around 0.066 seconds and 70.5 KB, respectively. On the
UCR-ECG dataset, the proving time, verification time, and
proof size are around 59 seconds, 0.341 seconds, and 364 KB,
respectively. On the British Birdsong dataset, ezDPS incurs
13.18 seconds for proving, 0.161 seconds for verification, and
172 KB of proof size. The difference in proving DWT among
three datasets derives from the number of features m. UCR-
ECG has the largest number of features, e.g., m = 750,
hence the DWT denoising is the dominant part of it. On
the other hand, m = 30 and m = 169 on KDD-1999 and
British Birdsong, respectively, lead DWT to a small ratio of
costs on these two datasets.
•Z-Score-based Normalization: The cost of Z-Score normaliza-

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 15

TABLE 3: Inference accuracy of ML algorithms on whole datasets.

Method KDD1999 UCR-ECG British Birdsong
classes 4 8 16 23 4 8 16 32 42 8 16 32 64 88

DWT+PCA+SVM 0.995 0.983 0.986 0.993 0.902 0.937 0.905 0.866 0.875 0.06 0.0 0.03 0.004 0.003
DWT+Z-Score+PCA+SVM 0.998 0.991 0.997 0.998 0.935 0.932 0.867 0.868 0.902 0.861 0.912 0.932 0.877 0.918
DWT+Z-Score+PCA+SVM (FPA)‡ 0.98 0.99 0.98 0.98 0.92 0.912 0.85 0.85 0.89 0.85 0.90 0.92 0.87 0.89
‡ FPA stands for fixed-point arithmetic.

tion is stable across a different number of classes. Similar to
the DWT processing, the complexity of Z-Score is also linear
to m, i.e., O(m), and independent of the number of classes
s. More specifically, the proving time, verification time, and
proof size are around 0.11 seconds, 0.015 seconds, and 16 KB
on the KDD-1999 dataset. For the UCR-ECG dataset, it costs
0.68 seconds of proving time, 0.038 seconds for verification,
and 36.5 KB of proof size. As for the British Birdsong dataset,
ezDPS requires 0.23 seconds, 0.02 seconds, and 22.4 KB of
proving time, verification time, and proof size, respectively.
The cost of Z-Score is nearly negligible on all three datasets,
especially compared to DWT and SVM. The reason is that
the constraints in proving Z-Score is relatively small.
•PCA-based Feature Extraction: The cost of PCA processing is
stable when s increases and it contributes the least portion
to the overall performance of our scheme. This is because
the complexity of PCA is O(m) (which is also independent
of s), compared with O(nm) in DWT, O(2m) in Z-Score,
and O((n+ k)t+ ns) in SVM. For example, it costs around
0.29 seconds to prove, 0.025 seconds for the verification, and
around 26 KB for the proof size on the UCR-ECG dataset.
Similar to Z-Score, the cost of proving PCA is also nearly
negligible on all three datasets. This is because the number
of constraints for PCA is the smallest among the four phases
in the MLIP compared with DWT and SVM.
•SVM Classification: We use different strategies to reduce
the size of the arithmetic circuit for SVM classification. For
KDD-1999, we adopt the polynomial kernel as a substitute
for the RBF kernel, which significantly reduces the number
of support vectors. For example, t = 11548 on KDD-1999
with RBF kernel while t = 1999 if using the polynomial
kernel. Moreover, although proving both kernels requires
the Exp gadget, the degree in the polynomial kernel is
usually a small integer. Thus, the number of constraints can
be further reduced. Specifically, the proving time is from
2.5 seconds to 657 seconds, with respect to the number of
classes s. The verification time and proof size range from
0.07 seconds and 75 KB to 1.138 seconds and 1215 KB.
Note that the number of samples increases rapidly when s
becomes larger, e.g., there are 1844 samples when s = 4,
while 395216 samples when s = 88. Hence the amount
of the support vectors grows, which makes SVM the most
dominant part when s ≥ 16.

For the datasets that are unsuitable to use other ker-
nels, e.g., UCR-ECG and British Birdsong, we adopt the
Nyströem approximation to replace the RBF kernel. The
model parameter t is controlled under 450 thus SVM is
not as resource-consuming as our prior work. More con-
cretely, the proving time on UCR-ECG is from 12.79 to
38.52 seconds. The verification time is from 0.159 to 0.275
seconds, and the proof size is 169 to 294 KB. On the British
Birdsong dataset, the proving time of SVM costs from 15

30 90 150 210 270 330 390 450
0.5

0.6

0.7

0.8

0.9

1

components (t)

In
fe

re
nc

e
ac

cu
ra

cy
(%

)

nys 8 nys 16
nys 32 nys 42

(a) UCR-ECG dataset

30 90 150 210 270 330 390 450
0.5

0.6

0.7

0.8

0.9

1

components (t)

In
fe

re
nc

e
ac

cu
ra

cy
(%

)

nys 8 nys 16
nys 32 nys 64
nys 88

(b) British Birdsong dataset

Fig. 9: Accuracy comparison of ezDPS with Nyströem ap-
proximation and RBF kernel.

to 57 seconds, while its verification time and proof size
are from 0.172 to 0.335 seconds and 184 KB to 357 KB,
respectively, for 8 to 88 classes.

7.4 Accuracy
We report the accuracy of our MLIP on the whole datasets
of KDD-1999, UCR-ECG, and British Birdsong. We use
the given training and testing datasets in UCR-ECG. For
KDD-1999 and British Birdsong, since there is no stan-
dard train/test data, we use the train-test-split method in
sklearn with 20% of testing ratio. For different numbers of
classes, we use all data from classes 0, 1, . . . , X − 1 for
X ≤ 100 classes. The second line of Table 3 presents
the plain accuracy of our MLIP on the selected datasets.
Our optimized MLIP achieves high accuracy with more
appropriate datasets, e.g., our method achieves over 99%
accuracy on KDD-1999 for all classes and over 86% accu-
racy on UCR-ECG and British Birdsong. The first row of
Table 3 illustrates the model accuracy without the Z-Score
normalization stage. The differences between the model
performance show that Z-Score effectively improves the
model capability. For instance, on KDD-1999 and UCR-
ECG, the model accuracy decreases from 0.01 to 0.33 when
removing the normalization from the MLIP. On the other
hand, Z-Score is proven to be vital in the British Birdsong
dataset. When the normalization is removed, the models
become entirely ineffective, e.g., the model accuracy is
close to zero. The last row of Table 3 presents the accu-
racy of executing DWT+Z-Score+PCA+SVM inference with
Fixed-Point Arithmetic (FPA), which is similar to how our
ezDPS works. We can see that FPA leads to an accuracy
decrease of around 1% to 2%. In KDD-1999, the pipeline
with fixed-point arithmetic achieves around 98% accuracy,
which decreases by around 1.8% than the floating-point
representation. A similar trend is also observed in UCR-
ECG and British Birdsong datasets, where the accuracy loses
around 1% to 2% due to FPA.

Finally, we report the effectiveness of the Nyströem
kernel approximation. The results are presented in Figure 9.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 16

The solid lines in Figure 9 are the accuracy acquired by
the pipeline with Nyströem approximation method, with
different settings of parameter t. The accuracy of Nyströem
approximation improves rapidly when t ≤ 90, and grows
slower after that. The MLIP with the approximation method
achieves over 86% accuracy for all classes on both UCR-ECG
and British Birdsong. In our implementation, we select the
values of t for higher accuracy with the smallest number
of components to reduce the size of the arithmetic circuit,
which is a trade-off between accuracy and efficiency.

8 MITIGATING MODEL STEALING ATTACKS

As discussed, model stealing attacks [7], [31], [65] aim to re-
construct the ML model from the inference result, given that
the adversary has black box access to the model parameters.
To our knowledge, there is no general defense against these
attacks beyond limiting the number of queries the client can
make to the model [31]. We present several strategies that
can mitigate these attacks, and, with some efforts, they can
be integrated orthogonally into our scheme to protect the
model privacy for both the inference result and the proof.
Limiting prediction information. The model holder can
limit the output information by releasing class probabilities
only for high-probabilities classes (e.g., top-5 in ImageNet
dataset [39]) [65], or only releasing the class labels [7], [65].
Limiting output information forces the adversary to query
more, which permits the model holder to identify them by
augmenting adversarial detection methods (see below) that
analyze their behaviors against benign users. Tramer et al.
[65] showed that by returning the class label without the
confidence score (like ezDPS currently offers), the number
of required queries to extract the model increases by 50-
100 times. Thus, the model holder can increase the cost per
query, thereby reducing the profit the adversary can make.
Adversarial detection. Juuti et al. [34] proposed a method
to detect whether the adversary is attempting to steal the
model by analyzing the distribution of the adversary’s
queries against the normal distribution. Kesarwani et al. [37]
proposed two performance metrics (e.g., the information
gain and the coverage of the input space) that quantify the
rate of information the adversaries gained from the queries
and are used to represent the status of the model extraction
process. Another approach is to embed watermark tech-
niques so that if the adversary steals the model, the owner
can detect and certify the stolen model [1], [32].
Obfuscating prediction results. Several approaches sug-
gest perturbing or adding noise to the prediction results
to prevent the adversary from executing the (supervised)
retraining process to reconstruct the model [7], [41], [65].
This can be achieved with Differential Privacy to hide the
decision boundary between prediction labels regardless of
how many queries are executed by the adversary [76].
Another approach is to poison the training objective of the
adversary by actively perturbing the predictions without
impacting the utility for benign users [51].

9 RELATED WORK

Privacy-Preserving ML. Privacy-Preserving ML (PPML)
permits secure evaluation of ML computation without leak-
ing information about the ML model and training/testing

data. Most PPML techniques rely on either secure compu-
tation protocols such as Multi-party computation (MPC)
[10] and Homomorphic Encryption (HE) [17], or Trusted
Execution Environment (TEE) such as Intel-SGX [9]. PPML
has been investigated in both training and inference phases.
Many PPML training schemes have been proposed for es-
tablished ML algorithms such as decision tree [2], k-means
clustering [5], [30], SVM [66], linear regression [48], [49],
logistic regression (LR) [38], [48] and neural networks (NN)
[48]. Other frameworks focus on the inference phase such
as GAZELLE [35], SWIFT [38], MiniONN [42], XONN [54],
CHET [11], Delphi [47], CryptoNets [19] and its variants
[4], [27]. Given MPC and FHE incur high costs in large-
scale data processing, some studies harnessed Intel-SGX to
make PPML more practical [50]. Unlike our ezDPS or zkML,
PPML protects the privacy of client and server data but not
computation integrity.
Verifiable and zero-knowledge ML. Unlike PPML, verifi-
able ML (vML) and zkML focus on the integrity of delegated
ML computation using VC and zero-knowledge techniques
[6], [16], [20], [52], [59]. Both vML and zkML are still in
the early development stage, with a limited number of
schemes being proposed. In vML, the resource-limited client
delegates the training/inference tasks to the server, and
later checks if the task has been performed correctly (no
privacy guarantee). Zhao et al. [75] proposed VeriML, a
vML framework for linear regression, LR, NN, SVM, and
DT training. Some vML schemes are designed for DNN
inference (e.g., [18], [64]) using VC protocols (e.g., [20],
[22]) or TEE [9]. On the other hand, zkML, first studied
in 2020 [74], enables integrity and model privacy in the
inference phase, where the client can verify if the inference
result on her data is indeed computed from the server’s
committed model without learning the model parameters.
Zhang et al. designed a zkDT scheme [74], followed by a
few zero-knowledge DNN inference constructions [15], [40],
[43]. Weng et al. proposed Mystique [69], a zkVC compiler
for efficient zero-knowledge NN inference.

10 CONCLUSION

We proposed ezDPS, an efficient and zero-knowledge MLIP
instantiated with classical ML algorithms including DWT,
Z-Score, PCA, and SVM. We introduced new gadgets for
proving ML operations in arithmetic circuits more effec-
tively than generic approaches. We also propose several
optimizations to reduce the model size. We fully imple-
mented ezDPS and evaluated its performance on real-world
datasets. T results showed that ezDPS is highly efficient,
which achieves better performance than generic methods.

ACKNOWLEDGMENTS

Thang Hoang is supported by an unrestricted gift from
Robert Bosch, 4-VA, and the Commonwealth Cyber Initia-
tive (CCI), an investment in the advancement of cyber R&D,
innovation, and workforce development. For more informa-
tion about CCI, visit www.cyberinitiative.org. Haodi Wang
and Rongfang Bie are supported by the National Science
and Technology Major Project (No. 2022ZD0115901), in part
by the National Natural Science Foundation of China (No.
62177007, No. 62102035, No. 71961022, No. 62302485).

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 17

REFERENCES

[1] Y. Adi, C. Baum, M. Cisse, B. Pinkas, and J. Keshet. Turning your
weakness into a strength: Watermarking deep neural networks
by backdooring. In 27th USENIX Security Symposium (USENIX
Security 18), pages 1615–1631, Baltimore, MD, Aug. 2018. USENIX
Association.

[2] R. Agrawal and R. Srikant. Privacy-preserving data mining. In
Proceedings of the 2000 ACM SIGMOD international conference on
Management of data, pages 439–450, 2000.

[3] R. AlTawy, H. S. Galal, and A. M. Youssef. Mjolnir: Breaking the
glass in a publicly verifiable yet private manner. IEEE Transactions
on Network and Service Management, 2023.

[4] A. Brutzkus, R. Gilad-Bachrach, and O. Elisha. Low latency
privacy preserving inference. In International Conference on Machine
Learning, pages 812–821. PMLR, 2019.

[5] P. Bunn and R. Ostrovsky. Secure two-party k-means clustering.
In Proceedings of the 14th ACM conference on Computer and commu-
nications security, pages 486–497, 2007.

[6] M. Campanelli, D. Fiore, and A. Querol. Legosnark: modular
design and composition of succinct zero-knowledge proofs. In
Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, pages 2075–2092, 2019.

[7] V. Chandrasekaran, K. Chaudhuri, I. Giacomelli, S. Jha, and S. Yan.
Exploring connections between active learning and model extrac-
tion. In 29th USENIX Security Symposium (USENIX Security 20),
pages 1309–1326, 2020.

[8] K. M. Chung, W. C. Kao, C. L. Sun, L. L. Wang, and C. J. Lin.
Radius margin bounds for support vector machines with the rbf
kernel. Neural Computation, 15(11), 2003.

[9] V. Costan and S. Devadas. Intel sgx explained. Cryptology ePrint
Archive, 2016, no. 086:1–118, 2016.

[10] R. Cramer, I. B. Damgård, et al. Secure multiparty computation.
Cambridge University Press, 2015.

[11] R. Dathathri, O. Saarikivi, H. Chen, K. Laine, K. Lauter, S. Maleki,
M. Musuvathi, and T. Mytkowicz. Chet: an optimizing compiler
for fully-homomorphic neural-network inferencing. In Proceedings
of the 40th ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 142–156, 2019.

[12] H. A. Dau, E. Keogh, K. Kamgar, C.-C. M. Yeh, Y. Zhu,
S. Gharghabi, C. A. Ratanamahatana, Yanping, B. Hu, N. Begum,
A. Bagnall, A. Mueen, G. Batista, and Hexagon-ML. The ucr time
series classification archive. https://www.cs.ucr.edu/∼eamonn/
time series data 2018/, 2018.

[13] H. de Valence. Merlin: composable proof transcripts for public-
coin arguments of knowledge. https://docs.rs/merlin/, 2020.

[14] R. Debnath and H. Takahashi. Kernel selection for the support
vector machine. IEICE transactions on information and systems,
87(12):2903–2904, 2004.

[15] B. Feng, L. Qin, Z. Zhang, Y. Ding, and S. Chu. Zen: An op-
timizing compiler for verifiable, zero-knowledge neural network
inferences. Cryptology ePrint Archive, 2021.

[16] R. Gennaro, C. Gentry, B. Parno, and M. Raykova. Quadratic span
programs and succinct nizks without pcps. In EUROCRYPT, pages
626–645. Springer, 2013.

[17] C. Gentry. A fully homomorphic encryption scheme. PhD thesis, 2009.
[18] Z. Ghodsi, T. Gu, and S. Garg. Safetynets: Verifiable execution

of deep neural networks on an untrusted cloud. In Proceedings
of the 31st International Conference on Neural Information Processing
Systems, NIPS’17, page 4675–4684, Red Hook, NY, USA, 2017.
Curran Associates Inc.

[19] R. Gilad-Bachrach, N. Dowlin, K. Laine, K. Lauter, M. Naehrig,
and J. Wernsing. Cryptonets: Applying neural networks to en-
crypted data with high throughput and accuracy. In International
conference on machine learning, pages 201–210. PMLR, 2016.

[20] S. Goldwasser, Y. T. Kalai, and G. N. Rothblum. Delegating
computation: interactive proofs for muggles. Journal of the ACM
(JACM), 62(4):1–64, 2015.

[21] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge com-
plexity of interactive proof systems. SIAM Journal on computing,
18(1):186–208, 1989.

[22] J. Groth. On the size of pairing-based non-interactive arguments.
In EUROCRYPT, pages 305–326. Springer, 2016.

[23] W. Haodi and T. Hoang. ezdps: An efficient and zero-knowledge
machine learning inference pipeline. In Proceedings on Privacy
Enhancing Technologies, pages 430–448, 2023.

[24] Y. He and J. Chen. Amlchain: Supporting anti-money laundering,
privacy-preserving, auditable distributed ledger. In International
Symposium on Emerging Information Security and Applications, pages
50–67. Springer, 2021.

[25] Y. He and J. Chen. Amlchain: Supporting anti-money laundering,
privacy-preserving, auditable distributed ledger. In W. Meng and
S. K. Katsikas, editors, Emerging Information Security and Applica-
tions, pages 50–67, Cham, 2022. Springer International Publishing.

[26] B. J. Heil, M. M. Hoffman, F. Markowetz, S.-I. Lee, C. S. Greene,
and S. C. Hicks. Reproducibility standards for machine learning
in the life sciences. Nature Methods, 18(10):1132–1135, 2021.

[27] E. Hesamifard, H. Takabi, and M. Ghasemi. Cryptodl: Deep neural
networks over encrypted data. CoRR, abs/1711.05189, 2017.

[28] G. B. Huang, M. Mattar, T. Berg, and M. E. Learned. Labeled
faces in the wild: A database for studying face recognition in un-
constrained environments. In Workshop on faces in’Real-Life’Images:
detection, alignment, and recognition, 2008.

[29] A. L. Isis and d. V. Henry. A pure-rust implementation of group
operations on ristretto and curve25519. https://github.com/
dalek-cryptography/curve25519-dalek, 2020.

[30] G. Jagannathan and R. N. Wright. Privacy-preserving distributed
k-means clustering over arbitrarily partitioned data. In ACM KDD,
pages 593–599, 2005.

[31] M. Jagielski, N. Carlini, D. Berthelot, A. Kurakin, and N. Papernot.
High accuracy and high fidelity extraction of neural networks.
In 29th USENIX Security Symposium (USENIX Security 20), pages
1345–1362, 2020.

[32] H. Jia, C. A. Choquette-Choo, V. Chandrasekaran, and N. Paper-
not. Entangled watermarks as a defense against model extraction.
In 30th USENIX Security Symposium (USENIX Security 21), pages
1937–1954. USENIX Association, Aug. 2021.

[33] H. Jiang, Q. Tian, J. Farrell, and B. A. Wandell. Learning the
image processing pipeline. IEEE Transactions on Image Processing,
26(10):5032–5042, 2017.

[34] M. Juuti, S. Szyller, S. Marchal, and N. Asokan. Prada: protecting
against dnn model stealing attacks. In 2019 IEEE European Sympo-
sium on Security and Privacy (EuroS&P), pages 512–527. IEEE, 2019.

[35] C. Juvekar, V. Vaikuntanathan, and A. Chandrakasan.
{GAZELLE}: A low latency framework for secure neural
network inference. In 27th {USENIX} Security Symposium
({USENIX} Security 18), pages 1651–1669, 2018.

[36] A. Kate, G. M. Zaverucha, and I. Goldberg. Constant-size com-
mitments to polynomials and their applications. In ASIACRYPT,
pages 177–194. Springer, 2010.

[37] M. Kesarwani, B. Mukhoty, V. Arya, and S. Mehta. Model extrac-
tion warning in mlaas paradigm. In Proceedings of the 34th Annual
Computer Security Applications Conference, pages 371–380, 2018.

[38] N. Koti, M. Pancholi, A. Patra, and A. Suresh. SWIFT: Super-
fast and robust Privacy-Preserving machine learning. In 30th
USENIX Security Symposium (USENIX Security 21), pages 2651–
2668. USENIX Association, Aug. 2021.

[39] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classifica-
tion with deep convolutional neural networks. Advances in neural
information processing systems, 25:1097–1105, 2012.

[40] S. Lee, H. Ko, J. Kim, and H. Oh. vcnn: Verifiable convo-
lutional neural network based on zk-snarks. Technical report,
Cryptology ePrint Archive, Report 2020/584. https://eprint. iacr.
org/2020/584, 2020.

[41] T. Lee, B. Edwards, I. Molloy, and D. Su. Defending against neural
network model stealing attacks using deceptive perturbations.
In 2019 IEEE Security and Privacy Workshops (SPW), pages 43–49.
IEEE, 2019.

[42] J. Liu, M. Juuti, Y. Lu, and N. Asokan. Oblivious neural network
predictions via minionn transformations. In Proceedings of the 2017
ACM SIGSAC conference on computer and communications security,
pages 619–631, 2017.

[43] T. Liu, X. Xie, and Y. Zhang. Zkcnn: Zero knowledge proofs
for convolutional neural network predictions and accuracy. In
Proceedings of the 2021 ACM SIGSAC Conference on Computer and
Communications Security, pages 2968–2985, 2021.

[44] Y. Liu, W.-C. Lee, G. Tao, S. Ma, Y. Aafer, and X. Zhang. Abs:
Scanning neural networks for back-doors by artificial brain stim-
ulation. In Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security, pages 1265–1282, 2019.

[45] E. J. d. S. Luz, W. R. Schwartz, G. Cámara-Chávez, and D. Menotti.
Ecg-based heartbeat classification for arrhythmia detection: A

https://www.cs.ucr.edu/~eamonn/time_series_data_2018/
https://www.cs.ucr.edu/~eamonn/time_series_data_2018/
https://docs.rs/merlin/
https://github.com/dalek-cryptography/curve25519-dalek
https://github.com/dalek-cryptography/curve25519-dalek

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 18

survey. Computer methods and programs in biomedicine, 127:144–164,
2016.

[46] R. J. Martis, U. R. Acharya, and L. C. Min. Ecg beat classification
using pca, lda, ica and discrete wavelet transform. Biomedical
Signal Processing and Control, 8(5):437–448, 2013.

[47] P. Mishra, R. Lehmkuhl, A. Srinivasan, W. Zheng, and R. A. Popa.
Delphi: A cryptographic inference service for neural networks. In
29th {USENIX} Security Symposium ({USENIX} Security 20), pages
2505–2522, 2020.

[48] P. Mohassel and P. Rindal. Aby3: A mixed protocol framework
for machine learning. In Proceedings of the 2018 ACM SIGSAC
conference on computer and communications security, pages 35–52,
2018.

[49] P. Mohassel and Y. Zhang. Secureml: A system for scalable
privacy-preserving machine learning. In 2017 IEEE symposium on
security and privacy (SP), pages 19–38, 2017.

[50] O. Ohrimenko, F. Schuster, C. Fournet, A. Mehta, S. Nowozin,
K. Vaswani, and M. Costa. Oblivious {Multi-Party} machine
learning on trusted processors. In 25th USENIX Security Sympo-
sium (USENIX Security 16), pages 619–636, 2016.

[51] T. Orekondy, B. Schiele, and M. Fritz. Prediction poisoning: To-
wards defenses against dnn model stealing attacks. In International
Conference on Learning Representations, 2020.

[52] B. Parno, J. Howell, C. Gentry, and M. Raykova. Pinocchio:
Nearly practical verifiable computation. In 2013 IEEE Symposium
on Security and Privacy, pages 238–252, 2013.

[53] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Van-
derplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of
Machine Learning Research, 12:2825–2830, 2011.

[54] M. S. Riazi, M. Samragh, H. Chen, K. Laine, K. Lauter, and
F. Koushanfar. {XONN}:{XNOR-based} oblivious deep neural
network inference. In 28th USENIX Security Symposium (USENIX
Security 19), pages 1501–1518, 2019.

[55] A. Salem, M. Backes, and Y. Zhang. Don’t trigger me! a triggerless
backdoor attack against deep neural networks. arXiv preprint
arXiv:2010.03282, 2020.

[56] A. Salem, R. Wen, M. Backes, S. Ma, and Y. Zhang. Dynamic
backdoor attacks against machine learning models. In 2022 IEEE
7th European Symposium on Security and Privacy (EuroS&P), pages
703–718. IEEE, 2022.

[57] E. B. Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer,
and M. Virza. Zerocash: Decentralized anonymous payments from
bitcoin. In 2014 IEEE Symposium on Security and Privacy, pages 459–
474. IEEE, 2014.

[58] J. T. Schwartz. Fast probabilistic algorithms for verification of
polynomial identities. Journal of the ACM (JACM), 27(4):701–717,
1980.

[59] S. Setty. Spartan: Efficient and general-purpose zksnarks without
trusted setup. In Annual International Cryptology Conference, pages
704–737. Springer, 2020.

[60] S. Setty. Spartan: High-speed zksnarks without trusted setup.
https://github.com/microsoft/Spartan, 2020.

[61] D. Stowell. British birdsong dataset. https://xeno-canto.org/
about/xeno-canto, 2014.

[62] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani. A detailed
analysis of the kdd cup 99 data set. In 2009 IEEE Symposium
on Computational Intelligence for Security and Defense Applications,
pages 1–6, 2009.

[63] M. S. Tong and W. C. Chew. The Nyström Method, pages 99–106.
2019.

[64] F. Tramer and D. Boneh. Slalom: Fast, verifiable and private
execution of neural networks in trusted hardware. arXiv preprint
arXiv:1806.03287, 2018.

[65] F. Tramèr, F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart.
Stealing machine learning models via prediction {APIs}. In 25th
USENIX security symposium (USENIX Security 16), pages 601–618,
2016.

[66] J. Vaidya, H. Yu, and X. Jiang. Privacy-preserving svm classifica-
tion. Knowledge and Information Systems, 14(2):161–178, 2008.

[67] C. Vonesch, T. Blu, and M. Unser. Generalized daubechies wavelet
families. IEEE Transactions on Signal Processing, 55(9):4415–4429,
2007.

[68] R. S. Wahby, I. Tzialla, A. Shelat, J. Thaler, and M. Walfish. Doubly-
efficient zksnarks without trusted setup. In 2018 IEEE Symposium
on Security and Privacy (SP), pages 926–943. IEEE, 2018.

[69] C. Weng, K. Yang, X. Xie, J. Katz, and X. Wang. Mystique:
Efficient conversions for Zero-Knowledge proofs with applications
to machine learning. In 30th USENIX Security Symposium (USENIX
Security 21), pages 501–518. USENIX Association, Aug. 2021.

[70] C. Williams and M. Seeger. Using the nyström method to speed up
kernel machines. Advances in neural information processing systems,
13, 2000.

[71] S. Wold, K. Esbensen, and P. Geladi. Principal component analysis.
Chemometrics and intelligent laboratory systems, 2(1-3):37–52, 1987.

[72] Z. Xing, Z. Zhang, J. Liu, Z. Zhang, M. Li, L. Zhu, and G. Russello.
Zero-knowledge proof meets machine learning in verifiability: A
survey. arXiv preprint arXiv:2310.14848, 2023.

[73] X. Xu. Zero-knowledge proofs in education: a pathway to disabil-
ity inclusion and equitable learning opportunities. Smart Learning
Environments, 11(1):7, 2024.

[74] J. Zhang, Z. Fang, Y. Zhang, and D. Song. Zero knowledge proofs
for decision tree predictions and accuracy. In Proceedings of the 2020
ACM SIGSAC Conference on Computer and Communications Security,
pages 2039–2053, 2020.

[75] L. Zhao, Q. Wang, C. Wang, Q. Li, C. Shen, and B. Feng. Veriml:
Enabling integrity assurances and fair payments for machine
learning as a service. IEEE Transactions on Parallel and Distributed
Systems, 32(10):2524–2540, 2021.

[76] H. Zheng, Q. Ye, H. Hu, C. Fang, and J. Shi. Protecting decision
boundary of machine learning model with differentially private
perturbation. IEEE Transactions on Dependable and Secure Comput-
ing, 2020.

Haodi Wang is currently a Ph.D. student at the
School of Artificial Intelligence at Beijing Normal
University. She received her bachelor’s degree
in 2018 at Beijing Normal University with Excel-
lent Graduation Thesis Award. Her research in-
terests are zero-knowledge proofs and privacy-
preserving machine learning.

Rongfang Bie is currently a Professor at the
School of Artificial Intelligence of Beijing Normal
University where she received her M.S. degree
on June 1993 and Ph.D degree on June 1996.
She was with the Computer Laboratory at the
University of Cambridge as a visiting faculty from
March 2003 for one year. She is the author or
co-author of more than 100 papers. Her current
research interests include knowledge represen-
tation and acquisition for the Internet of Things,
dynamic spectrum allocation, big data analysis

and application.

Thang Hoang is an Assistant Professor in the
Department of Computer Science at Virginia
Tech (January 2021). He received his PhD de-
gree in Computer Science from the University of
South Florida, in August 2020. He received his
MS degree in Computer Science from Chonnam
National University, South Korea (2014), and BS
degree in Computer Science from the University
of Science, VNU HCMC, Vietnam (2010). Prior
to joining Virginia Tech, he was a postdoctoral
fellow at Carnegie Mellon University from August

to December 2020. His research interests include applied cryptography,
privacy-enhancing technologies, security, and biometrics.

https://github.com/microsoft/Spartan
https://xeno-canto.org/about/xeno-canto
https://xeno-canto.org/about/xeno-canto

	Introduction
	Research Gap and Problem Statement
	Our Contributions

	Preliminaries
	Commit-and-Prove Argument Systems
	Machine Learning Pipeline

	Models
	Our Proposed Zero-Knowledge MLIP Framework
	Gadgets
	Building Blocks
	New Gadgets for Zero-Knowledge MLIP

	ezDPS Framework
	DWT-Based Data Preprocessing
	Z-Score Normalization
	PCA-Based Feature Extraction
	SVM Classification
	Putting Everything Together
	Zero-Knowledge Proof of Accuracy

	Analysis
	Implementation
	Experimental Evaluation
	Configuration
	Overall Results
	Detailed Cost Analysis
	Accuracy

	Mitigating Model Stealing Attacks
	Related Work
	Conclusion
	References
	Biographies
	Haodi Wang
	Rongfang Bie
	Thang Hoang

