Zero-Knowledge AI Inference with High Precision

Abstract

Artificial Intelligence as a Service (AIaaS) enables users to query a model hosted by a service provider and receive inference results from a pre-trained model. Although AIaaS makes artificial intelligence more accessible, particularly for resource-limited users, it also raises verifiability and privacy concerns for the client and server, respectively. While zero-knowledge proof techniques can address these concerns simultaneously, they incur high proving costs due to the non-linear operations involved in AI inference and suffer from precision loss because they rely on fixed-point representations to model real numbers.
In this work, we present ZIP, an efficient and precise commit and prove zero-knowledge SNARK for AIaaS inference (both linear and non-linear layers) that natively supports IEEE-754 double-precision floating-point semantics while addressing reliability and privacy challenges inherent in AIaaS. At its core, ZIP introduces a novel relative-error-driven technique that efficiently proves the correctness of complex non-linear layers in AI inference computations without any loss of precision, and hardens existing lookup-table and range proofs with novel arithmetic constraints to defend against malicious provers. We implement ZIP and evaluate it on standard datasets (e.g., MNIST, UTKFace, and SST-2). Our experimental results show, for non-linear activation functions, ZIP reduces circuit size by up to three orders of magnitude while maintaining the full precision required by modern AI workloads.

Publication
ACM Conference on Computer and Communications Security (CCS)
Thang Hoang
Thang Hoang
Assistant Professor
Previous

Related