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Abstract
Artificial Intelligence as a Service (AIaaS) enables users to query a

model hosted by a service provider and receive inference results

from a pre-trained model. Although AIaaS makes artificial intelli-

gencemore accessible, particularly for resource-limited users, it also

raises verifiability and privacy concerns for the client and server,

respectively. While zero-knowledge proof techniques can address

these concerns simultaneously, they incur high proving costs due to

the non-linear operations involved in AI inference and suffer from

precision loss because they rely on fixed-point representations to

model real numbers.

In this work, we present ZIP, an efficient and precise commit and

prove zero-knowledge SNARK for AIaaS inference (both linear and

non-linear layers) that natively supports IEEE-754 double-precision

floating-point semantics while addressing reliability and privacy

challenges inherent in AIaaS. At its core, ZIP introduces a novel

relative-error-driven technique that efficiently proves the correct-

ness of complex non-linear layers in AI inference computations

without any loss of precision, and hardens existing lookup-table and

range proofs with novel arithmetic constraints to defend against

malicious provers. We implement ZIP and evaluate it on standard

datasets (e.g., MNIST, UTKFace, and SST-2). Our experimental re-

sults show, for non-linear activation functions, ZIP reduces circuit

size by up to three orders of magnitude while maintaining the full

precision required by modern AI workloads.
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1 Introduction
Artificial Intelligence (AI) has demonstrated exceptional perfor-

mance across a wide range of domains, including data analysis and

pattern recognition. However, training state-of-the-art machine

learning models requires high-quality data, domain expertise, and

specialized computing infrastructure, which many organizations

may lack. To overcome these challenges, many turn to Artificial

Intelligence as a Service (AIaaS) platforms. AIaaS enables the com-

mercialization of artificial intelligence capabilities through scalable

cloud resources, allowing organizations to benefit from advanced

capabilities such as analytics, automation, and predictive insights

without relying on in-house expertise or infrastructure.

While AIaaS alleviates the burden of maintaining local infras-

tructure, it introduces a critical trust assumption: users have no

direct way to verify that their inputs are processed correctly by

the intended model. As a result, they must implicitly trust the

provider to deliver correct and faithful inference results. However,

this assumption is strong and can be violated in practice. An adver-

sarial provider can reduce processing costs by substituting a light-

weight model or fabricating outputs entirely. Even well-intentioned

providers can constitute a single point of failure. For example, in-

sider threats, software misconfigurations, insecure deployments

(e.g., vulnerable AI libraries), or malware may allow attackers to in-

ject code, alter model parameters, or tamper with outputs, thereby

compromising the integrity of the entire AI inference pipeline [61].

These concerns are especially critical in high-stakes domains like

medical diagnosis, financial decisions, or fraud detection, where

one tampered output can lead to severe consequences. While pub-

lishing the model would enable verification, doing so exposes pro-

prietary intellectual property, such as model weights, which service

providers cannot afford due to commercial sensitivity. Therefore,

there is a critical need for a verifiable and secure inference mecha-

nism that ensures the correct execution of the user’s input on the

server’s intended model, while preserving model confidentiality.

To address the verifiability challenges, existing methods (e.g.,

[28, 75]) often leverage Verifiable Computation (VC) [13, 62], which

enables the server to provide a mathematical proof that the in-

ference computation was performed correctly on the intended

AI model. Although VC enables clients to verify the inference

integrity, the proof partially exposes the server’s model, risking

intellectual-property leakage. Zero-knowledge machine learning
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(zkML) [23, 36, 38, 73] addresses this leakage issue by employing

zero-knowledge proof (ZKP) techniques [7, 9, 24, 27, 45] to preserve

model privacy while still proving correct inference computation.

Despite their strong integrity and privacy guarantees, existing

ZKP methods may not be suitable for handling non-linear oper-

ations, potentially becoming a bottleneck in AI inference proofs

when compared to linear computations. Specifically, existing ZKP

constructions for non-linear functions require large circuits and

suffer from precision loss since they rely on converting floating-

point models to fixed-point encodings over finite fields to rep-

resent model real numbers. When sensitive applications such as

healthcare or finance are considered, even a tiny precision loss,

whether from fixed-point representation or approximations of com-

plex non-linear functions, can have serious ramifications for orga-

nizations [4, 46, 60]. For instance, in medical diagnostics, a model

might distinguish benign from malignant lesions based on subtle

pixel differences [4, 60].

Existing studies have attempted to address these bottlenecks for

relatively simple non-linear activations (e.g., ReLU, sigmoid, tanh),

but suffer from inherent drawbacks. One line of research uses lin-

ear built-ins (e.g., gadgets) or bit decomposition [23, 36, 38, 65] to

encode non-linear functions, which becomes prohibitively expen-

sive as activations grow more complex. Another approach employs

piecewise-polynomial approximations [2, 25, 28, 75], reducing cir-

cuit size but introducing approximation errors that degrade pre-

cision when used alone. A third strategy relies on precomputed

lookup tables [12, 29, 40, 56] or multiple client-server interactions

[50] for activation computations, both of which incur large storage

overhead, scalability issues, or high communication costs.

Meanwhile, AI research is increasingly adopting more complex

non-linear activations such as ELU, SeLU, and GeLU. As a result,

state-of-the-art verifiable secure inference frameworks [2, 12, 29, 36,

38, 40, 50, 56, 65, 75] find themselves trapped in a “trade-off triangle”

of scalability, efficiency, and precision to support modern activation

functions without exploding proving time, or sacrificing model

accuracy. Given these limitations in proving complex non-linear

functions within AI inference, we pose the following question:

Can we design a zero-knowledge AI inference scheme that effi-
ciently proves complex non-linear function computations without
sacrificing accuracy or functionality, while guaranteeing both infer-
ence integrity and server model privacy?

1.1 Our Contributions
In this paper, we answer the above question affirmatively by present-

ing ZIP, a new framework for privacy-preserving and verifiable AI

inference.ZIP supports the verification of full AI inference pipelines

on complex models that are evaluated under high numerical preci-

sion, while simultaneously preserving model privacy. In particular,

ZIP offers the following key properties:

• IEEE-754-compliant AI Inference Pipeline: A key property

of ZIP is that it permits zero-knowledge verification of AI infer-

ence evaluated under IEEE-754 double-precision semantics. This

allows ZIP to offer higher precision performance (e.g., accuracy),

at the cost of longer proving/verification time, than prior tech-

niques [29, 38, 40, 56, 65] that trade precision using fixed-point

representations for faster proving/verifying AI inference, which

suffer from quantization errors.

• Reduced Constraints for Non-Linear Activations: ZIP only

requires a few thousand R1CS constraints to prove non-linear

activations in zero-knowledge under IEEE-754 semantics. This

achieves up to three orders of magnitude reduction in circuit size

compared to prior gadget-based or bit-decomposition approaches

when directly applied to prove the same non-linear activations

under IEEE-754 standards [23, 36, 38, 65].

• Activation-Agnostic Support: ZIP supports a wide range of

modern activation functions that are critical in AI inference

pipelines, such as GeLU, SeLU, and ELU. Another important

aspect of our proposed technique is that it can generalize to other

activations without requiring custom circuit redesign. This offers

greater flexibility than prior approaches that require designing

new gadget [23, 36, 38, 65] for each non-linear function.

• Small Lookup Table Size: ZIP only requires a small lookup

table to enable ZKP of non-linear activations under IEEE-754

double-precision. For example, to prove GeLU, ZIP requires 70

table entries. This is one to three orders of magnitude smaller

than prior schemes [29, 40, 56] for proving non-linear activations,

which require hundreds to thousands of lookup table entries.

Technical Highlights. To enable efficient zero-knowledge proofs

of AI inference computed under high-precision IEEE-754 semantics,

we come up with a new technique based on numerical analysis and

relative error bounds. The idea is as follows. Given a non-linear

activation function, we approximate it using piecewise polynomials

and store their coefficients in a lookup table. During inference, the

server locates the polynomial piece corresponding to a given input

and evaluates it to produce an approximate output. However, to

preserve numerical fidelity throughout the AI inference pipeline,

the server does not use this approximation for downstream com-

putation. Instead, it uses the exact computation produced by the

full-precision IEEE-754 evaluation of the activation function. The

server then proves (in zero-knowledge) that the approximate output

is within a small relative error of the exact computation. This de-

sign decouples the proof cost from the complexity of the activation

function while preserving high computational precision.

In essence, our design requires proving two key statements:

(i) lookup validity, which shows that the selected polynomial is

present in the predefined lookup table and corresponds to the input

interval; and (ii) approximation soundness, which shows that the

approximated value is very close to the exact computation.

While there exist some techniques that can partially support

lookup validity, applying them in our AI inference setting with

model privacy guarantees is non-trivial. Specifically, the server

must prove that it has selected a vector of coefficients correspond-

ing to a single polynomial piece, without revealing which piece or

interval was chosen. Although standard lookup arguments (e.g.,

[70]) allow proving that multiple entries exist in a table, they do

not enforce ordering among them. This limitation becomes critical

when polynomial coefficients are stored as individual entries in the

lookup table, as an adversary could combine coefficients from differ-

ent polynomial pieces and produce a valid proof. On the other hand,

naively applying a standard range proof with a hidden interval may

allow an adversary to mix endpoints from different intervals in the
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table, resulting in a valid proof for an invalid interval that does not

correspond to any actual polynomial piece.

To address the ordered selection challenge, our approach is to

store each coefficient of every polynomial piece as a separate entry

in the lookup table. The entries are organized such that: (i) coeffi-

cients within a polynomial piece appear in fixed order, and (ii) all

the pieces themselves follow the order of their corresponding input

intervals. This layout preserves both the internal structure of each

polynomial and the global order of the piecewise polynomial. We

then design new arithmetic constraints on top of existing lookup

arguments to ensure that the selected entries belong to the same

polynomial piece and are retrieved in the correct order (see §4.3.1).

To address the hidden interval challenge, we represent the inter-

val endpoints of polynomial pieces in a separate public lookup table.

Each pair of endpoints is stored in two consecutive entries, and

these pairs are ordered according to the order of their correspond-

ing polynomial pieces. We then design new arithmetic constraints

on top of the existing lookup argument to ensure that the selected

private endpoints are adjacent in the table, retrieved in order, and

that the secret input lies within the selected interval (see §4.3.2).

To prove approximation soundness, we adopt the relative error

model from [26] and apply Horner’s method [31] to efficiently prove

polynomial evaluations under IEEE-754 semantics (see §4.3.3).

Finally, we note that a full AI inference pipeline consists of both

linear and non-linear layers. Our contribution primarily targets

non-linear activation functions due to their complex structure and

the difficulty of proving them efficiently. For linear layers, ZIP di-

rectly leverages the existing technique from [20] to prove IEEE-754-

compliant linear operations.

We formalize the security of our technique and implement and

evaluate ZIP on real datasets. The source code and experimental

scripts are available at https://github.com/vt-asaplab/ZIP.

2 Preliminaries
Notation. Let Z𝑛 = {0, 1, 2, · · · , 𝑛}, Z∗𝑛 = Z𝑛 \ {0}, and N =

{0, 1, 2, · · · }. 𝜆 denotes security parameters, and negl(·) stands for
the negligible function. 𝑥

$← Z𝑛 indicates that 𝑥 is chosen randomly

from the set Z𝑛 . PPT refers to Probabilistic Polynomial Time.𝐴
𝑐≈ 𝐵

indicates computational indistinguishability of two quantities𝐴 and

𝐵. Bold letters (like a and A) denote vector and matrix, respectively.

a[𝑖] represents the element 𝑖 in vector a. We define a polynomial

𝑓 𝑘 of degree 𝑘 with coefficients {𝑎𝑖 }𝑘𝑖=0 by 𝑓 𝑘 (𝑥) = ∑𝑘
𝑖=0 𝑎𝑖𝑥

𝑖
.

2.1 Commit-and-Prove Argument Systems
Commit-and-Prove SNARK (CP-SNARK) [9] permits a prover to

commit to a witness 𝑤 in advance for an NP-statement (R,L),
where R is an NP relation and L is the corresponding language of

valid inputs. Given an input𝑥 ∈ L, the prover proves the knowledge
of a witness𝑤 such that (𝑥,𝑤) ∈ R. CP-SNARK is a tuple of PPT

algorithms CPZKP = (Setup,Comm, Prov,Ver) as follows.

• pp ← CPZKP.Setup(1𝜆): Given a security parameter 𝜆, it out-

puts public parameters pp.
• cm← CPZKP.Comm(w, 𝑟 , pp): Given a witness w and random-

ness 𝑟 , it outputs cm as a commitment to w.

• 𝜋 ← CPZKP.Prov(x,w, pp): Given a statement x and a witness

w, it outputs a proof 𝜋 that shows (x,w) ∈ R.
• 𝑏 ← CPZKP.Ver(𝜋, cm, x, pp): Given a proof 𝜋 , a commitment

cm, and a statement x, it outputs 𝑏 where 𝑏 is 1 (accept) if 𝜋

is a valid proof for (x,w) ∈ R and cm is a commitment to w;

otherwise, it outputs 0 (reject).

Security.We present CP-SNARK’s security properties as follows.

Definition 1. CP-SNARK satisfies the following security properties.

• Completeness: For any 𝜆, 𝑟, (x,w) ∈ R s.t. pp← CPZKP.Setup(1𝜆),
cm← CPZKP.Comm(w, 𝑟 , pp), and𝜋 ← CPZKP.Prov(x,w, pp),
it holds that Pr [CPZKP.Ver(𝜋, cm, x, pp) = 1] = 1.

• Knowledge soundness: For any PPT prover P∗, and statement x,
there exists a PPT extractor E that, with access to the entire exe-

cution process and the randomness of P∗, can extract a witness

w s.t. pp ← CPZKP.Setup(1𝜆), cm ← CPZKP.Comm(w, 𝑟 , pp)
for randomness 𝑟 , 𝜋∗ ← P∗ (x, pp),w← EP∗ (x, 𝜋∗, pp), it holds

Pr

[
(x,w) ∉ R ∧ CPZKP.Ver(𝜋∗, cm, x, pp) = 1

]
≤ negl(𝜆)

• Zero-knowledge: There exists a PPT simulator S = (S1,S2)
such that for any PPT verifier V∗, (x,w) ∈ R, and cm ←
CPZKP.Comm(w, 𝑟 , pp), it holds that

Pr


pp← CPZKP.Setup(1𝜆)

𝜋 ← CPZKP.Prov(x,w, pp)
CPZKP.Ver(𝜋, cm, x, pp) = 1

 𝑐≈ Pr


pp← S1 (1𝜆)

𝜋 ← S2 (x, pp)
V∗ (𝜋, cm, x, pp) = 1


2.1.1 Polynomial Commitment Scheme. Polynomial Commitment

(PC) lets a prover commit to a polynomial so the prover can later

prove an evaluation of the committed polynomial at a given point.

PC is commonly used in CP-SNARKs, where the prover com-

mits to polynomial(s) that encode the witness and circuit structure.

These commitments hide the polynomial coefficients but support

evaluation proofs. During proof generation, the prover derives a

new polynomial that aggregates the relevant circuit constraints us-

ing the values encoded in the previously committed polynomial(s),

and proves that this derived polynomial evaluates to a claimed value

at a randomly chosen point. The verifier, using public setup param-

eters, performs a single check that verifies both the correctness of

the evaluation and its consistency with the original commitment.

KZG Polynomial Commitment [34]. Let G be a cyclic group

of prime order 𝑞 with generator J1K, and denote any group ele-

ment as J𝑥K ∈ G where 𝑥 ∈ Z𝑞 is its discrete logarithm relative

to J1K. We write group operations additively (J𝑥K + J𝑦K = J𝑥 + 𝑦K)
and scalar multiplication as 𝛿 · J𝑥K = J𝛿 𝑥K for 𝛿 ∈ Z𝑞 . We re-

call KZG polynomial commitment [34] that offers efficient proof

and verification. This efficiency stems from its one-time trusted

setup, which generates a structured reference string (SRS) for poly-

nomials of degree up to 𝑘 . The KZG scheme relies on a bilinear

pairing group. Let G1, G2, and G𝑇 be cyclic groups of prime or-

der 𝑞. Let J1K
1
and J1K

2
be the generators of G1 and G2, respec-

tively. A bilinear pairing is a function 𝑒 : G1 × G2 → G𝑇 and use

(𝑞,G1,G2,G𝑇 , 𝑒, J1K1, J1K2) ← BilGen(1𝜆) to output the parame-

ters for the bilinear pairing. KZG contains the following algorithms.

• pp′ ← Setup(1𝜆, 𝑘): Given security parameter 𝜆 and polyno-

mial degree bound 𝑘 , it runs bp = (𝑞,G1,G2,G𝑇 , 𝑒, J1K1, J1K2) ←

https://github.com/vt-asaplab/ZIP
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BilGen(1𝜆). Let 𝜌 $← Z∗𝑝 , it outputs public parameters pp′ ←
(bp, {J𝜌𝑖K

1
, J𝜌𝑖K

2
}𝑘
𝑖=0
).

• cm𝑓 ← Comm(𝑓 , pp′): Given a polynomial 𝑓 (𝑥) = ∑𝑘
𝑖=0 𝑎𝑖𝑥

𝑖
, it

outputs cm𝑓 = J𝑓 (𝜌)K
1
=
∑𝑘
𝑖=0 𝑎𝑖 · J𝜌𝑖K1.

• (𝑦, 𝜋KZG) ← Open(𝑓 , 𝜁 , pp′): Given evaluation point 𝜁 , it com-

putes 𝑞𝑘−1 (𝑥) = 𝑓 (𝑥 )−𝑓 (𝜁 )
𝑥−𝜁 . Let {𝑏𝑖 }𝑘𝑖=0 be coefficients of 𝑞𝑘−1.

It outputs 𝑦 = 𝑞𝑘−1 (𝜁 ) and 𝜋 = J𝑞𝑘−1 (𝜌)K
1
=
∑𝑘
𝑖=0 𝑏𝑖 · J𝜌𝑖K1.

• {0, 1} ← Ver(𝜋, cm𝑓 , 𝜁 ,𝑦, pp
′): Given a proof 𝜋 , a commitment

cm, the evaluation point 𝜁 , and the evaluation 𝑦, it outputs 1

(accept) if 𝑒 (cm𝑓 − J𝑦K
1
, J1K

2
) = 𝑒 (𝜋, J𝑥 − 𝜁 K

2
); otherwise, it

outputs 0 (reject).

The above KZG scheme achieves computationally hiding under

the Discrete Logarithm assumption, where the commitment of the

polynomial 𝑓 (𝑥) = ∑𝑘
𝑖=0 𝑎𝑖𝑥

𝑖
is of form cm = J𝑓 (𝜌)K

1
=
∑𝑘
𝑖=0 𝑎𝑖 ·

J𝜌𝑖K
1
. One can make KZG achieve unconditional hiding under

the Strong Diffie-Hellman (SDH) assumption by using a random

polynomial
ˆ𝑓 (𝑥) = ∑𝑘

𝑖=0 𝑐𝑖𝑥
𝑖
[34]. Let JℎK

1
be a generator in G1,

where ℎ remains private, the perfectly hiding commitment of 𝑓 (𝑥)
is ˆcm = J𝑓 (𝜌)K

1
+ J ˆ𝑓 (𝜌)K

1
=
∑𝑘
𝑖=0 𝑎𝑖 · J𝜌𝑖K1 +

∑𝑘
𝑖=0 𝑐𝑖 · J𝜌𝑖 · ℎK

1
.

PlonK [24]. We recall PlonK, a PC-based zero-knowledge CP-

SNARK framework that offers succinct, constant-time verification

and streamlined proving. To enforce copy constraints (i.e., the same

value appearing in multiple places in the circuit), PlonK employs

permutation arguments via a zero-knowledge permutation polyno-

mial. All constraints, including permutation checks, are aggregated

into a single quotient polynomial for succinct verification.

2.1.2 Lookup Arguments. Lookup arguments enable a prover to

prove that all elements of a committed vector a ∈ Z𝑘+1𝑝 belong to

a public table c ∈ Z𝑛𝑝 (𝑘 + 1 < 𝑛); that is, for every index { 𝑗}𝑘
𝑗=0

,

there exists some index 𝑖 such that a[ 𝑗] = c[𝑖]. We recall Caulk

[70], a zero-knowledge lookup argument that allows a prover to

prove that each of the element of a private vector a belongs to a

public table c without revealing either the elements of a or their
position in c. Caulk achieves position-hiding linkability between

a and c by re-randomizing KZG as a vector commitment with

additional blinding factors that hide both the values of a and their

corresponding indices in c.

2.2 Numerical Precision and Approximation
2.2.1 Floating-Point Arithmetic. The IEEE 754 standard [1] encodes

real numbers using a finite number of bits. A floating point repre-

sentation of a real number is a tuple (𝑠, 𝑒, 𝑚̂), where 𝑠 is the sign
bit (i.e., 𝑠 ∈ {0, 1}), 𝑒 is the exponent and 𝑚̂ is the mantissa (or sig-

nificand). In IEEE single precision, the exponent and mantissa are

represented using 8 and 23 bits, respectively; in double precision,

they use 11 and 52 bits, respectively.

2.2.2 Approximation. The relative error in numerical analysis [58]

provides a normalized measure of the discrepancy between an ap-

proximate value and the exact solution. It helps determine whether

an approximation is sufficiently accurate relative to the true value.

Let 𝑎 be the exact value and 𝑏 its approximation. Given 𝛿 ′ as the
relative error bound, the relative error is defined as

|𝑎−𝑏 |
|𝑎 | ≤ 𝛿 ′.

Non-linear Functions Approximation. We recall polynomial

expansions (e.g., Taylor, Chebyshev [43]) and piecewise polyno-

mial approximations (e.g., spline methods [19]) as standard ways to

approximate nonlinear functions. By tolerating a small approxima-

tion error 𝛿 , we can represent the non-linear function using either

a single polynomial 𝑓 (𝑥) or a set of piecewise polynomials F𝑚

with𝑚 low-degree polynomials {𝑓𝑖 (𝑥)}𝑚𝑖=1 over the set of intervals
I = {[𝑡0, 𝑡1], [𝑡1, 𝑡2], . . . , [𝑡𝑚−1, 𝑡𝑚]}, where 𝑡0 < 𝑡1 < . . . < 𝑡𝑚 s.t.

F𝑚 (𝑥) =


𝑓1 (𝑥), 𝑥 ∈ [𝑡0, 𝑡1],
𝑓2 (𝑥), 𝑥 ∈ [𝑡1, 𝑡2],
.
.
.

𝑓𝑚 (𝑥), 𝑥 ∈ [𝑡𝑚−1, 𝑡𝑚] .

(1)

3 Model
System Model. Our ZIP system involves a client and a server. The

server holds a well-trained AI modelW ∈ Mpp, whereMpp is the

model space, and the client holds query data X ∈ Npp, with Npp
the message space. The server first commits to W, after which the

client sends X for inference. The server employs its committed

model
1
to perform inference on client data while preserving the

privacy of W and ensuring computational correctness. Formally,

ZIP is a zero-knowledge AI inference scheme defined as a tuple of

PPT algorithms ZIP = (Setup,Comm, Infer,Ver) as follows.

• pp← Setup(1𝜆, 𝑙): Given a security parameter 𝜆 and an upper

bound 𝑙 on model size, it outputs public parameters pp.
• cm← Comm(W, 𝑟 , pp): Given model parameters W ∈ Mpp and

randomness 𝑟 ∈ Rpp, where Rpp is the random space, it outputs

a commitment cm ∈ Dpp, where Dpp is the commitment space.

• (𝜋, y) ← Infer(W,X, pp): Given model parametersW ∈Mpp and

query data X ∈ Npp, it outputs inference result y = ˆF (W,X) ∈
Npp (where

ˆF is the ideal inference functionality) and a proof 𝜋 .

• {0, 1} ← Ver(y, cm, 𝜋, pp): Given an inference y ∈ Npp, a com-

mitment cm ∈ Dpp, and a proof 𝜋 , it outputs 1 if 𝜋 is a valid

proof for y = ˆF (W,X); otherwise, it outputs 0.

Threat Model. In our system, there is mutual distrust between the

client and the server. We assume that the server may act maliciously

by processing the client’s query arbitrarily, potentially using query

data or model parameters other than the actual ones. On the other

hand, the client is curious about the server’s model parameters. We

allow the client to verify the correctness of the inference results

provided by the server, while ensuring the privacy of the AI model.

Security Model. We define the security model of zero-knowledge

and verifiable AI inference, ensuring both the integrity of inference

computation and the privacy of the server’s model, as follows.

Definition 2. Zero-knowledge AI inference satisfies the following.

• Completeness. For any 𝜆, 𝑙 , W ∈ Mpp, X ∈ Npp, 𝑟 ∈ Rpp s.t.

(pp) ← ZIP.Setup(1𝜆, 𝑙), cm← ZIP.Comm(W, 𝑟 , pp), (𝜋, y) ←
ZIP.Infer(W,X, pp), it holds Pr [ZIP.Ver(y, cm, 𝜋, pp) = 1] = 1.

1
In practice, an external entity (e.g., an auditor) can verify the commitment in advance.
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• Soundness. For any 𝜆, 𝑙 , and PPT adversary A, it holds that

Pr



pp← ZIP.Setup(1𝜆, 𝑙 )
(cm∗,W∗,X, y∗, 𝜋∗, 𝑟 ) ← A(pp)

cm∗ = ZIP.Comm(W∗, 𝑟 , pp)
ZIP.Ver(y∗, cm∗, 𝜋∗, pp) = 1

ˆF(W∗,X) ≠ y∗


≤ negl(𝜆)

• Model privacy. For any 𝜆, 𝑙 , W ∈ Mpp, and PPT adversary A,

there exists simulator S such that

Pr

 A(y, cm, 𝜋, pp) = 1

��������
pp← ZIP.Setup(1𝜆, 𝑙 )

cm← ZIP.Comm(W, 𝑟 , pp)
X← A(cm, pp)

(𝜋, y) ← ZIP.Infer(W,X, pp)


𝑐≈

Pr


A(y, cm, 𝜋, pp) = 1

����������
(cm, pp) ← S(1𝜆, 𝑙, 𝑟 )

X← A(cm, pp)
(𝜋, y) ← SA (cm,X, 𝑟 , pp), given

oracle access to
ˆF to compute

y = ˆF(W,X)


Out-of-scope attacks. In this work, we focus on ensuring the

correctness of the AI inference and the privacy of the server’s model

parameters. Beyond this, attacks such as model extraction/stealing

[10, 33, 49, 57, 63] (e.g., replicating the model) and model backdoors

[51, 52] (e.g., hidden triggers) are out of scope.

4 Our Proposed ZIP Scheme
At a high level, ZIP delivers end-to-end, IEEE-754–compliant zero-

knowledge proofs for AI inference on client data by introducing a

novel high-precision technique that efficiently verifies the network’s

non-linear layers. A naïve approach to achieve high precision is to

directly prove the exact computation of these non-linear functions.

While conceptually simple, this approach is often impractical due to

its high computational cost. An alternative is to approximate non-

linear functions using numerical methods. Although this approach

improves efficiency, a careless design may lead to a low inference

accuracy due to precision loss caused by approximation and the

limitations of the cryptographic proof back-end, which relies on

finite field arithmetic (see below for details).

In this section, we show how ZIP addresses the dual challenges

of efficiency and accuracy in generating zero-knowledge proofs for

non-linear functions in AI inference.

4.1 Problem Formulation
Cryptographic operations rely on finite field arithmetic for exact

computation, whereas scientific computing and machine learning

operate on real numbers, typically using IEEE floating-point arith-

metic. This fundamental mismatch makes fixed-point or finite field

representations poorly suited for capturing the behavior of real-

valued computations in AI inference. Given this, precisely proving

non-linear functions (e.g., activations) in AI inference, defined over

the real numbers, is challenging for two reasons.

First, proving AI inference functions, where both the server’s AI

model and client data are in IEEE-754 floating point, requires con-

verting floating-point operations (e.g., addition, multiplication, nor-

malization, rounding) into SNARK-friendly arithmetic or Boolean

circuits via bit-level decomposition and explicit rounding logic,

which increases circuit complexity. Second, directly hardcoding

non-linear functions (e.g. activations) into arithmetic circuits in-

volves creating linear built-ins (e.g., gadgets) for basic non-linear

operations (e.g., square root, hyperbolic tangent) and then compos-

ing these gadgets to construct arithmetic circuits for complex activa-

tion functions. While these constructions maintain high-precision

computation, they lead to exponential growth in overall circuit size.

For instance, let 𝑦′ be a real number produced by earlier linear

layers, and the GeLU activation function defined as GELU(𝑦′) =
𝑦′

2

[
1+erf

( 𝑦′√
2

) ]
≈ 𝑦′

2

[
1+tanh

(√︃
2

𝜋 (𝑦
′+0.044715𝑦′3)

) ]
. Proving the

correctness of this GeLU activation involves handling non-linear

operations such as the square root and the hyperbolic tangent (with

tanh(𝑥) = 𝑒𝑥−𝑒−𝑥
𝑒𝑥+𝑒−𝑥 ). Given the state-of-the-art gadgets for proving

the correctness of the square root [20] and tanh [65] functions,

and employing the techniques in [66] and [3] that follow the IEEE

754 standard for proving floating-point addition and multiplication

operations (with circuit sizes of 2456 and 8854 Boolean gates per

addition and multiplication for single precision [66], and 15637 and

44899 Boolean gates for double precision [3]), we estimate that

a single GeLU activation requires approximately 1,302,142 R1CS

constraints in single precision (and 6,808,760 R1CS constraints in

double precision). This overhead increases when multiple GeLU

activations are used within a complete AI inference pipeline.

A common strategy to reduce circuit size is to approximate non-

linear functions. In particular, a piecewise polynomial approxima-

tion F𝑚,𝑘
(as defined in (Equation 1)) partitions the input domain

X into 𝑚 intervals I = {[𝑡0, 𝑡1], [𝑡1, 𝑡2], . . . , [𝑡𝑚−1, 𝑡𝑚]} and ap-

proximates the non-linear function within each interval using a

polynomial 𝑓 𝑘 of degree 𝑘 . As a result, F𝑚,𝑘
consists of𝑚 poly-

nomial pieces {𝑓 𝑘
𝑖
}𝑚
𝑖=1

, each of degree 𝑘 , defined over the set of

intervals I. Although this approach effectively reduces circuit com-

plexity for complex non-linear operations, it is often insufficient

when high precision is required. Specifically, piecewise polynomial

approximation introduces an approximation error 𝛿 ; thus, if these

approximated outputs are used in subsequent inference layers, the

accumulated errors can lead to considerable precision loss.

Hence, we encounter a dilemma: (i) approximation alone cannot

meet high-precision demands, and (ii) precisely proving non-linear

functions entails large circuit sizes.

4.2 Our Proposed Approach
To address the aforementioned dilemma of proving non-linear func-

tions, we first focus on reducing the circuit size using an approxi-

mation strategy. Specifically, we precompute a piecewise polyno-

mial approximation F𝑚,𝑘
for the target non-linear function, which

introduces an approximation error 𝛿 . Since F𝑚,𝑘
is independent

of the client’s query, it can be precomputed offline. Given 𝑦′ as
the floating-point output of a previous linear inference layer, the

prover selects the appropriate polynomial piece 𝑓 𝑘𝑒 ∈ F𝑚,𝑘
(with

1 ≤ 𝑒 ≤ 𝑚) whose domain contains 𝑦′ and computes 𝑓 𝑘𝑒 (𝑦′).
Next, to address precision loss by passing forward the approxi-

mated output 𝑓 𝑘𝑒 (𝑦′) into subsequent layers, given 𝑦′, our strategy
is to exactly compute the actual activation function using floating

point arithmetics and directly feed this exact activation output (𝑦)

into the next inference layer. Finally, to prove the correctness of
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the exact output 𝑦, ZIP demonstrates that 𝑦 is sufficiently close to

the approximated output 𝑓 𝑘𝑒 (𝑦′).
Technical Roadmap.We begin by proving that the polynomial

piece 𝑓 𝑘𝑒 is correctly selected from the set F𝑚,𝑘
.

To achieve this, we first demonstrate the membership of 𝑓 𝑘𝑒 in

F𝑚,𝑘
by representing the piecewise polynomial F𝑚,𝑘

as a lookup

table. Specifically, we embed the private coefficients {𝑎𝑖 }𝑘𝑖=0 of the
selected polynomial piece 𝑓 𝑘𝑒 into a private vector a = (𝑎0, 𝑎1, . . . , 𝑎𝑘 )
of size 𝑘 + 1. Similarly, we represent F𝑚,𝑘

in a public lookup table

encoded as a vector c of size 𝑛 =𝑚 · (𝑘 + 1), such that

c = (𝑓 𝑘
1
, . . . , 𝑓 𝑘𝑒 , . . . , 𝑓

𝑘
𝑚) = ({𝑎

(1)
𝑖
}𝑘𝑖=0, . . . , {𝑎

(𝑒 )
𝑖
}𝑘𝑖=0, . . . , {𝑎

(𝑚)
𝑖
}𝑘𝑖=0) .

Although one could prove that the private elements of a (resp. 𝑓 𝑘𝑒 )

are contained in c (i.e., F𝑚,𝑘
) using a standard lookup argument,

directly employing existing lookup protocols poses significant chal-

lenges. The difficulty arises because the structure of the public table

c for piecewise polynomials does not align directly with the ex-

isting protocol designs; specifically, the coefficients of 𝑓 𝑘𝑒 (i.e., the

elements of a) must appear as an ordered tuple in a designated block

within c, whereas standard lookup protocols allow each lookup to

reference any individual element at arbitrary positions. Thus, we

must ensure that there exists an index 𝑖 ∈ {1, . . . ,𝑚} for each
𝑗 ∈ {0, . . . , 𝑘} such that a(𝑖 ) [ 𝑗] = c[(𝑖 − 1) (𝑘 + 1) + 𝑗].

Next, to complete the lookup proof of membership, we prove

that the coefficients of the selected polynomial piece 𝑓 𝑘𝑒 are taken

from the appropriate row of F𝑚,𝑘
corresponding to the interval

I = {[𝑡0, 𝑡1], [𝑡1, 𝑡2], . . . , [𝑡𝑚−1, 𝑡𝑚]} in which 𝑦′ resides. While a

standard range proof could verify that 𝑦′ lies in the correct interval

for the selected 𝑓 𝑘𝑒 , directly applying existing range-proof protocols

poses challenges. Similar to the earlier case, the structure of the

public table c and the range check requirements do not directly

correspond to typical designs: we must keep the selected interval

private during the proof while also proving that this private interval
indeed belongs to the set I.

Without enforcing these structures, a malicious prover could

produce a proof using incorrect coefficients or intervals, thereby

compromising the overall proof correctness.

Once the correct polynomial 𝑓 𝑘𝑒 is selected, we prove the correct-

ness of the actual non-linear function output 𝑦 by introducing an

approximation relation technique grounded in numerical analysis

[26, 58]. Using this relative error–based technique, ZIP allows the

(honest) prover to guarantee that the approximated computation

output (i.e., polynomial evaluation 𝑓 𝑘𝑒 (𝑦′)) is sufficiently close to

the precise output 𝑦, with an error bound 𝛿 such that

|𝑦 − 𝑓 𝑘𝑒 (𝑦′) | ≤ 𝛿 |𝑓 𝑘𝑒 (𝑦′) |. (2)

Hence, to address the efficiency and precision challenges outlined

above in proving non-linear functions, we proceed as follows:

(1) We extend lookup arguments to securely prove that 𝑓 𝑘𝑒 ∈ F𝑚,𝑘
.

(2) We adapt range proofs to prove that 𝑓 𝑘𝑒 is selected from the

correct interval that contains 𝑦′.
(3) We prove that the relation (2) holds.

Remark. Efficiently proving non-linear activation functions using

the approximation relation technique (2) allows a malicious prover

to deviate from selecting the correct activation output 𝑦, since the

zero-knowledge setting prevents the verifier from directly accessing

𝑦. However, ZIP limits the prover’s malicious behavior by enforcing

a small error bound relative to the target approximated polynomial

𝑓 𝑘𝑒 (𝑦′), thereby preventing arbitrary selection of the activation

output.

4.3 High-Precision Approximation Arguments
In this section, we detail the three key components of our high-

precision zero knowledge proof for non-linear functions. First, we

extend the Caulk lookup argument to enforce that the prover selects

the correct ordered tuple of polynomial coefficients from a public

table. Second, we introduce a private interval lookup argument

that proves the prover selects the correct interval corresponding

to the value’s range, without revealing the interval itself. Finally,

we describe our approximation-relation technique to prove that

the evaluated polynomial output is sufficiently close to the precise

non-linear function output within the specified error bound.

4.3.1 Polynomial Coefficients Lookup. In this section, we extend

the Caulk [70] lookup argument protocol to securely prove that 𝑓 𝑘𝑒
is a valid polynomial piece of F𝑚,𝑘

. We start by giving a high-level

design of Caulk. We then explain why applying it directly to our set-

ting is inadequate, as it does not enforce the ordering and structural

constraints required for correct polynomial selection. To overcome

this, we introduce a set of additional arithmetic constraints that

extend Caulk to support ordered tuple extraction from a designated

block of the public table.

Caulk Overview. Caulk lets a prover demonstrate that every el-

ement of committed private vector a of size 𝑘 + 1 appears in a

committed public table c of size 𝑛. Accordingly, it first constructs a
subvector c𝐼 of c that contains all elements of c which appear in

a (without duplicates, i.e., c[𝑖] = a[ 𝑗]). Let V𝑘 = {1, 𝜈, . . . , 𝜈𝑘−1}
with 𝜈𝑘 = 1, and H = {1, 𝜔, . . . 𝜔𝑛−1} with 𝜔𝑛 = 1 be subgroups of

roots of unity. Define the subset H𝐼 = {𝜔𝑖−1}𝑖∈𝐼 . Furthermore, let

𝜇 𝑗 (𝑥)𝑘𝑗=0, 𝜆𝑖 (𝑥)
𝑛
𝑖=0, and 𝜏𝑖 (𝑥)𝑖∈𝐼 be the Lagrange interpolation poly-

nomials defined over these sets of roots of unity. It then encodes

the vectors a, c, and c𝐼 into the polynomials 𝐴(𝑥) = ∑𝑘
𝑗=0 𝑎 𝑗 𝜇 𝑗 (𝑥),

𝐶 (𝑥) = ∑𝑛
𝑖=0 𝑐𝑖𝜆𝑖 (𝑥), and 𝐶𝐼 (𝑋 ) =

∑
𝑖∈𝐼 𝑐𝑖𝜏𝑖 (𝑥), and defines an

auxiliary polynomial𝑈 (𝑥) = ∑𝑘
𝑗=0𝑤

𝑖 𝑗 𝜇 𝑗 (𝑥), and committing to all

these polynomials.

Let 𝑍𝑉𝑘 (𝑥) be the vanishing polynomial for V𝑘 and let 𝑍𝐼 (𝑥)
be the vanishing polynomial for the interpolation nodes in 𝐶𝐼 (𝑥).
To prove that all elements of 𝐶𝐼 (𝑥) appear somewhere in 𝐶 (𝑥), it
employs KZG proofs of openings to show that

𝐶 (𝑥) −𝐶𝐼 (𝑥) = 𝑍𝐼 (𝑥)𝐻1 (𝑥) (3)

for some 𝐻1 (𝑥). Because𝐶𝐼 (𝑋 ), 𝑍𝐼 (𝑋 ), and𝑈 (𝑥) could potentially
reveal private information about the elements of a (or their corre-
sponding indices in c), it introduces additional blinding factors to
𝐶𝐼 (𝑋 ), 𝑍𝐼 (𝑋 ), and 𝑈 (𝑥). Next, Caulk proves the correct formation

of the blinded 𝑍𝐼 (𝑥) by

𝑍𝐼 (𝑈 (𝑥)) = 𝑍𝑉𝑘 (𝑥)𝐻2 (𝑥) (4)

for some𝐻2 (𝑥). Finally, after proving the well-formation of blinded

polynomial𝑈 (𝑥), it proves that the commitment to 𝐶𝐼 (𝑥) indeed
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matches the same committed values in by

𝐶𝐼 (𝑈 (𝑥)) −𝐴(𝑥) = 𝑍𝑉𝑘 (𝑥)𝐻3 (𝑥) (5)

for some 𝐻3 (𝑥).
Limitations of Caulk for Piecewise Polynomial Coefficients
Lookup. In ZIP, the elements of the private vector a (1) must form

a single ordered tuple in c, and (2) reside entirely within exactly a

designated blocks of size 𝑘 + 1 in the public c. However, directly
employing the original Caulk protocol in the ZIP setting (i.e., where

the table contains a set of polynomial coefficients) introduces a crit-

ical problem. This is because Caulk protocol (following Equations

(3)-(5)) does not enforce any ordering constraints on the elements in

a and allows the elements of a to be taken from arbitrary positions

in c.
Specifically, consider a public table c composed of𝑚 vectors (i.e.,

blocks) {a(𝑖 ) }𝑚
𝑖=1

, each of size 𝑘 + 1, such that

c = (a(1) , . . . , a(𝑒 ) , . . . , a(𝑚) )

=
(
𝑎
(1)
0

, . . . , 𝑎
(1)
𝑘

, . . . , 𝑎
(𝑒 )
0

, . . . , 𝑎
(𝑒 )
𝑘

, . . . , 𝑎
(𝑚)
0

, . . . , 𝑎
(𝑚)
𝑘

)
.

(6)

For each block 𝑖 ∈ {1, . . . ,𝑚}, the valid indices corresponding to

the elements of the private vector a(𝑖 ) in c lies in the index range

[(𝑖 − 1) (𝑘 + 1), 𝑖 (𝑘 + 1) − 1] . (7)

Hence, if the selected private vector is a(𝑒 ) (with 1 ≤ 𝑒 ≤ 𝑚) with

elements {𝑎 (𝑒 )
𝑖
}𝑘
𝑖=0

, then the correct ordered tuple for a is

a = (𝑎 (𝑒 )
0

, 𝑎
(𝑒 )
1

, . . . , 𝑎
(𝑒 )
𝑘
) . (8)

However, if a malicious prover constructs an invalid tuple from

arbitrary indices in c such that â = (𝑎 (𝑒−1)
2

, 𝑎
(𝑚)
𝑘

, . . . , 𝑎
(𝑒 )
0
) or

forms a seemingly ordered tuple spanning two blocks, such that

â = (𝑎 (𝑒−1)
𝑘

, 𝑎
(𝑒 )
0

, . . . , 𝑎
(𝑒 )
𝑘−1), then, by following the original Caulk

protocol, the malicious prover could exploit the lack of ordering

constraints and produce a proof that the verifier would accept; thus,

compromising the overall proof’s integrity.

Our Proposed Zero-Knowledge Ordered Tuple Arguments for
Piecewise Polynomial Coefficients Lookup. To enable proving

ordered tuple selection from designated blocks, ZIP extends Caulk

with new arithmetic constraints that (i) confine all 𝑘 + 1 elements

of private vector a to exactly one predetermined block (defined in

(7)) of c, (ii) ensure the elements of a are in consecutive positions

within the selected block with their order preserved, and (iii) leak

no additional information about which block is chosen.

We first define 𝑘 + 1 auxiliary indicator vectors {s𝑗 }𝑘𝑗=0, each of

size 𝑛. Given the public table c of size 𝑛 (cf. (6)), and the private

vector a(𝑒 ) of size 𝑘 + 1 (cf. (8)), we construct s𝑗 for each 𝑗 ∈
{0, . . . , 𝑘} as follows

s𝑗 [𝑖] =
{
1, if 𝑖 = (𝑒 − 1) (𝑘 + 1) + 𝑗,
0, otherwise.

More precisely, each s𝑗 acts as an indicator vector that marks the

position of a(𝑒 ) [ 𝑗] in c. We then commit to these auxiliary vectors

s𝑗 and introduce new constraints to prove the well-formation of s𝑗
constructed by the prover.

Accordingly, for each 𝑗 ∈ {0, . . . , 𝑘}, we impose the constraints

𝑛−1∑︁
𝑖=0

s𝑗 [𝑖] = 1 (9)

These constraints ensure that each s𝑗 has exactly one nonzero entry,
thereby selecting exactly one position in c. Subsequently, for every
𝑗 ∈ {0, . . . , 𝑘} and 𝑖 ∈ {0, . . . , 𝑛 − 1}, we set constraints

s𝑗 [𝑖] (s𝑗 [𝑖] − 1) = 0 (10)

this enforce that each s𝑗 [𝑖] is binary (i.e. s𝑗 [𝑖] ∈ {0, 1}). More-

over, we introduce ordering constraints. Particularly, for every

𝑖 ∈ {1, . . . ,𝑚} and every 𝑗 ∈ {1, . . . , 𝑘} we require

s𝑗 [(𝑖 − 1) (𝑘 + 1) + 𝑗] = s𝑗−1 [(𝑖 − 1) (𝑘 + 1) + ( 𝑗 − 1)] . (11)

These constraints link the positions of the nonzero entries between

auxiliary vectors s𝑗 , where they guarantee that the positions of

their nonzero entries are adjacent within the designated block; thus,

the elements (𝑎 (𝑒 )
0

, . . . , 𝑎
(𝑒 )
𝑘
) of the private vector a, appear in a

contiguous order in 𝑐 . After that, we impose a single-block selection

constraint

𝑚∑︁
𝑖=1

𝑘∑︁
𝑗=0

s𝑗 [(𝑖 − 1) (𝑘 + 1) + 𝑗] = (𝑘 + 1) . (12)

Since each s𝑗 has exactly one 1, any single block of length (𝑘 + 1)
will contain exactly one entry of 1 from each s𝑗 . Thus, the only way
the global sum can equal (𝑘 + 1) is if exactly one block contains all

the nonzero entries, while the others remain zero. Then, we enforce

s0 [𝑛 − 1] = 0 and s𝑘 [0] = 0, (13)

which ensures the selected contiguous positions do not spill over

from the end of c back to the beginning. Finally, for each 𝑗 ∈
{0, . . . , 𝑘},

a[ 𝑗] =
𝑛−1∑︁
𝑖=0

s𝑗 [𝑖]c[𝑖] (14)

These constraints confirm that the single nonzero element 1 in s𝑗 ,
correctly indicates the selected index in c and truly corresponds to

the 𝑗th element of a (i.e., a(𝑒 ) [ 𝑗]).
Given the piecewise polynomial approximation F𝑚,𝑘

of the

target non-linear function, ZIP embeds the coefficients of all the

polynomial pieces into a public table c of size 𝑛 =𝑚 · (𝑘 + 1) s.t.

c = (𝑓 𝑘
1
, . . . , 𝑓 𝑘𝑒 , . . . , 𝑓

𝑘
𝑚)

=
(
𝑎
(1)
0

, . . . , 𝑎
(1)
𝑘

, . . . , 𝑎
(𝑒 )
0

, . . . , 𝑎
(𝑒 )
𝑘

, . . . , 𝑎
(𝑚)
0

, . . . , 𝑎
(𝑚)
𝑘

)
.

Given the selected polynomial piece 𝑓 𝑘𝑒 (with 1 ≤ 𝑒 ≤ 𝑚) having

coefficients {𝑎 (𝑒 )
𝑖
}𝑘
𝑖=0

, we form the corresponding private vector

as a = (𝑎 (𝑒 )
0

, 𝑎
(𝑒 )
1

, . . . , 𝑎
(𝑒 )
𝑘
). Finally, by enforcing our proposed

arithmetic constraints (e.g., Equations (9)-(14)), ZIP securely proves

that 𝑓 𝑘𝑒 ∈ F𝑚,𝑘
.

Lemma 1 (Soundness of Extended Lookup Argument). Any
prover that satisfies constraints (9)–(14) must have chosen a single
block of 𝑘 + 1 consecutive coefficients in c and in the correct order. In
particular, the private vector a equals exactly one of the valid blocks
in c (Equation 6).
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Proof. Suppose, for the sake of contradiction, that a malicious

prover P∗ satisfies constraints (9)–(14) but the private vector a does
not match with any single contiguous block of length 𝑘 + 1 in the

public table c. We consider the only ways this can happen and show

each contradicts one of the proposed constraints.

• Scenario 1: Some coefficient lies outside c. If P∗ attempts

to include any a[ 𝑗] ∉ {c[0], . . . , c[𝑛 − 1]}, then constraint (14)

would force a contradiction, where the right-hand side is a convex

combination of entries in c, so it cannot produce a value outside

c. Formally, by the soundness of back-end lookup proof, such an

event can occur only with negligible probability.

• Scenario 2: All a[ 𝑗] lie in c, but not in a single ordered block.
Since each s𝑗 selects exactly one position ((9)–(10)), and there

are 𝑘 + 1 vectors, exactly 𝑘 + 1 entries of c are chosen. We break

this scenario into three subcases:

– Case 1: Out-of-order selection. If the prover picks 𝑘 + 1
entries all from the same block but not in increasing index

order, then constraint (11) is violated. This constraint forces

the one in s𝑗 to be immediately adjacent to the one in s𝑗−1,
preventing any reordering.

– Case 2: Mixing multiple blocks. If the prover’s 𝑘 + 1 se-

lected entries span more than one block, then the block-sum

constraint (12) cannot hold; it requires that all 𝑘 + 1 ones lie in
a single block of length 𝑘 + 1, which is impossible if they are

drawn from different blocks.

– Case 3: Wrap-around selection. If the prover attempts to

wrap a block across the end and beginning of c, selecting
entries from both the final and initial positions, then constraint

(13) is violated. This constraint prevents placing the first or

last selected coefficient across the public table boundary.

In all cases, at least one of the enforced constraints is contradicted.

Therefore the only way to satisfy (9)–(14) is to choose exactly one

contiguous block of length 𝑘 + 1, in the correct order. Constraint

(14) then ensures that the private vector a matches precisely those

𝑘 + 1 entries from c. This completes the proof. □

4.3.2 Private Interval Lookup Arguments. In this section, we adapt

standard range proofs to prove that the private value 𝑦′, produced
by preceding linear layers, lies within the correct interval of I =

{[𝑡0, 𝑡1], [𝑡1, 𝑡2], . . . , [𝑡𝑚−1, 𝑡𝑚]}, even in the presence of amalicious

prover. We first highlight why standard range proofs are insufficient

in our setting, as they may leak the selected interval or allow invalid

interval selection. To address this, we introduce a set of arithmetic

constraints that privately enforce the ordered selection of valid

interval endpoints from a public table. We then combine this with a

floating-point range check to prove that 𝑦′ lies within the selected

interval, without revealing which interval was chosen.

Issues of Using Standard Range Proofs for Private Interval.
Given 𝑦′, ZIP selects the polynomial piece 𝑓 𝑘𝑒 from F𝑚,𝑘

, if and

only if 𝑦′ lies in the interval [𝑡𝑒−1, 𝑡𝑒 ] ∈ I for some 1 ≤ 𝑒 ≤ 𝑚.

Although standard range-proof protocols can be used to prove

𝑡𝑒−1 ≤ 𝑦′ ≤ 𝑡𝑒 , they face two challenges.

(1) First, directly applying the standard range proof might reveal

the selected interval [𝑡𝑒−1, 𝑡𝑒 ] during the proof process. Al-

though the piecewise polynomial F𝑚,𝑘
and its intervals I are

public, revealing the specific interval [𝑡𝑒−1, 𝑡𝑒 ] would compro-

mise the privacy of the coefficients of 𝑓 𝑘𝑒 .

(2) Second, preserving the confidentiality of the selected interval

requires additional proof that the chosen interval [𝑡𝑒−1, 𝑡𝑒 ] is
indeed one of the valid intervals in I. Without this additional

proof, a malicious prover could arbitrarily select an interval and

bypass the proof.

Our Proposed Zero-Knowledge Private Interval Arguments.
To overcome both challenges, we must simultaneously (i) hide the

chosen interval, (ii) prove that its two endpoints are adjacent in the

public set I, and (iii) prove that 𝑦′ lies within those hidden bounds.

Accordingly, to keep the selected interval [𝑡𝑒−1, 𝑡𝑒 ] private, we first
construct a public table c′ of size𝑚 + 1 that contains all interval
endpoints from I such that

c′ = (𝑡0, . . . , 𝑡𝑒−1, 𝑡𝑒 , . . . , 𝑡𝑚). (15)

We also define a private vector a′ of size 𝑘′ = 2 representing the

interval endpoints containing 𝑦′, which we aim to keep private

such that

a′ = (𝑡𝑒−1, 𝑡𝑒 ) . (16)

Next, we employ the lookup argument to prove that all elements of

committed a′ are contained in a committed public table c′. However,
in ZIP the elements of a′ (i.e., (𝑡𝑒−1, 𝑡𝑒 )) must appear as a single or-
dered tuple within c′. Since the standard index-item correspondence

lookup argument design does not enforce ordering constraints (i.e.,

each element is treated independently), naively employing a lookup

argument leaves our ZIP vulnerable to a malicious prover.

Our Proposed Ordered Interval Arguments. To prevent a

malicious prover from bypassing the proof with non-consecutive

or misordered endpoints, we introduce new additional arithmetic

constraints that enforce correct ordering which guarantees that the

elements of a′ (i.e., (𝑡𝑒−1, 𝑡𝑒 )) appear as a correctly ordered tuple in
c′ thereby preventing arbitrary selection. To this end, we introduce

𝑘′ = 2 auxiliary vectors {s′
𝑗
}𝑘 ′−1
𝑗=0

, each of size𝑚 + 1 (with arbitrary

𝑚, but 𝑘′ fixed at 2). Given the public table c′ (as in (15)) and the

private vector a′ (as in (16)) corresponding to the selected interval

[𝑡𝑒−1, 𝑡𝑒 ] for 𝑓 𝑘𝑒 , for each 𝑗 ∈ {0, 1}, we set each auxiliary s′
𝑗
s.t.

s′𝑗 [𝑖] =
{
1, if 𝑖 = 𝑒 + 𝑗 − 1,
0, otherwise.

Each auxiliary vector s′
𝑗
serves as an indicator that pinpoints the

exact position of the 𝑗th endpoint (i.e., 𝑡𝑒−1 for 𝑗 = 0 and 𝑡𝑒 for

𝑗 = 1) in c′. We then commit to these auxiliary vectors s′
𝑗
and

prove the well-formation of the s′
𝑗
. To do so, for each 𝑗 ∈ {0, 1}, we

propose the following constraints

𝑚∑︁
𝑖=0

s′𝑗 [𝑖] = 1 (17)

These constraints ensure each s′
𝑗
has exactly one nonzero entry.

Then, for every 𝑗 ∈ {0, 1} and 𝑖 ∈ {0, . . . ,𝑚}, we provide constraints

s′𝑗 [𝑖] (s
′
𝑗 [𝑖] − 1) = 0 (18)

which guarantee that each entry of s′
𝑗
is binary. Next, we propose

the ordering constraints such that for each 𝑖 ∈ {1, . . . ,𝑚} and



Zero-Knowledge AI Inference with High Precision CCS ’25, October 13–17, 2025, Taipei, Taiwan

𝑗 ∈ {1} (i.e., 𝑗 = 1 since we have two vectors), we enforce

s′𝑗 [𝑖 + 𝑗 − 1] = s′𝑗−1 [𝑖 + 𝑗 − 2], (19)

or s′
1
𝑖 = s′

0
[𝑖 − 1]. This constraint ensures that if the first endpoint

𝑡𝑒−1 is at position (𝑖 − 1), then the second endpoint 𝑡𝑒 must be right

next to it (i.e., at position 𝑖); thus, [𝑡𝑒−1, 𝑡𝑒 ] appear consecutively in

c′. Then, we impose

s′
0
[𝑚] = 0 and s1 [0] = 0, (20)

which ensures not to select an endpoint at the very end of c′ (for
𝑗 = 0) together with one at the very beginning (for 𝑗 = 1). Finally,

for every 𝑗 ∈ {0, 1}, we provide

a′ [ 𝑗] =
𝑚∑︁
𝑖=0

s′𝑗 [𝑖]c
′ [𝑖] (21)

which confirm that the nonzero entry in s′
𝑗
select the correct ordered

internal tuple [𝑡𝑒−1, 𝑡𝑒 ] in a′ from c′.
After imposing additional arithmetic constraints to correctly

select the valid interval [𝑡𝑒−1, 𝑡𝑒 ] from I, we employ a range proof

to prove the secrete value 𝑦′ lies within the chosen interval i.e.

𝑡𝑒−1 ≤ 𝑦′ ≤ 𝑡𝑒 . (22)

To achieve this, since the selected interval [𝑡𝑒−1, 𝑡𝑒 ] are kept private,
we first introduce two auxiliary witnesses 𝑧1, 𝑧2 such that 𝑧1 = 𝑦′ −
𝑡𝑒−1 and 𝑧2 = 𝑡𝑒−𝑦′ . Subsequently, to prove Equation (22), we prove
that 𝑧1 and 𝑧2 are non negative, which implies𝑦′ is indeed inside the
correct interval. Since 𝑧1, 𝑧2 are floating point numbers presented

as a tuple (𝑠, 𝑒, 𝑚̂), to detect they are non-negative, we can check

their sign bit 𝑠 and to check if they are 0, we check their mantissa

𝑚̂ such that (𝑠𝑧1 = 0 ∨ 𝑚̂𝑧1 = 0) = 1, and (𝑠𝑧2 = 0 ∨ 𝑚̂𝑧2 = 0) = 1.

Together, these constraints prove the correctness of 𝑡𝑒−1 ≤ 𝑦′ ≤ 𝑡𝑒 .

Lemma 2 (Soundness of Private Interval Argument). Any
prover that satisfies constraints (17)–(21) alongwith the non-negativity
checks on 𝑧1 and 𝑧2 must have selected two consecutive endpoints
(𝑡𝑒−1, 𝑡𝑒 ) in c′ and shown 𝑡𝑒−1 ≤ 𝑦′ ≤ 𝑡𝑒 .

Proof. Assume toward contradiction that a malicious prover P∗
satisfies constraints (17)–(21) and the non-negativity checks on 𝑧1
and 𝑧2, yet fails to both (a) select two consecutive endpoints (𝑡𝑒−1, 𝑡𝑒 )
from c′, or (b) prove 𝑡𝑒−1 ≤ 𝑦′ ≤ 𝑡𝑒 . We examine the possible cases

and show each violates one of the enforced constraints.

• Scenario 1: Endpoints not in c′. If 𝑡𝑒−1 or 𝑡𝑒 is not in the public

table c′, then constraint (21) cannot hold, where the right-hand

side is a convex combination of entries in c′, so it cannot produce
a value outside c′. By the soundness of the underlying lookup

argument, this event has only negligible probability.

• Scenario 2: Non-consecutive or misordered endpoints. Each
s′
𝑗
selects exactly one index (by (17)-(18)), and there are two such

vectors. If these two ones do not occupy adjacent positions in c′,
then one of the following must occur:

– Case 1: Out-of-order selection. The selected indices are not

in increasing order. Constraint (19) enforces that the “1” in s′
1

immediately follows the “1” in s′
0
. Any violation contradicts

this adjacency requirement.

– Case 2: Wrap-around selection. The prover picks one end-
point at the last position of c′ and the other at the first position.
Constraint (20) prevents exactly that configuration.

Hence the only way to satisfy (17)–(21) is to pick two adjacent
entries in c′.
• Scenario 3: Failing the range check. Even with correct con-

secutive endpoints, the prover must still prove (22). We set 𝑧1 =

𝑦′ − 𝑡𝑒−1 and 𝑧2 = 𝑡𝑒 − 𝑦′, and enforce non-negativity of each

𝑧𝑖 by checking its IEEE-754 sign bit and mantissa. If 𝑦′ < 𝑡𝑒−1,
then 𝑧1 < 0 and its sign bit test fails. If 𝑦′ > 𝑡𝑒 , then 𝑧2 < 0 and

its test fails. Thus any proof passing the non-negativity checks

must satisfy (22).

Therefore, the only way to satisfy all constraints is to (1) select two

consecutive entries (𝑡𝑒−1, 𝑡𝑒 ) from c′ and (2) prove 𝑡𝑒−1 ≤ 𝑦′ ≤ 𝑡𝑒 .

This completes the proof. □

4.3.3 Proving Approximation Correctness Relation. This section
details how ZIP proves |𝑦 − 𝑓 𝑘𝑒 (𝑦′) | ≤ 𝛿 |𝑓 𝑘𝑒 (𝑦′) |, thereby showing

that the approximated output 𝑓 𝑘𝑒 (𝑦′) is within the permitted relative

error 𝛿 of the exact value 𝑦. This, in turn, restricts any potential

malicious behavior by the prover to a small, quantifiable error

bound.

Proving the Polynomial Evaluation 𝑓 𝑘𝑒 (𝑦′). Let 𝑦′ and the

private coefficient vector a(𝑒 ) = (𝑎 (𝑒 )
0

, 𝑎
(𝑒 )
1

, . . . , 𝑎
(𝑒 )
𝑘
) be given in

IEEE-754 format. A naïve term-by-term proof of 𝑓 𝑘𝑒 (𝑦′) = 𝑎
(𝑒 )
𝑘

𝑦′𝑘 +
· · · + 𝑎 (𝑒 )

1
𝑦′ + 𝑎 (𝑒 )

0
requires 2𝑘 − 1 floating-point multiplications

and 𝑘 floating-point additions. To reduce this overhead, ZIP applies

the Horner’s method [31]. Specifically, we re-write the polynomial

𝑓 𝑘𝑒 (𝑦′) in nested form 𝑓 𝑘𝑒 (𝑦′) = a(𝑒 )
0
+ 𝑦′ (a(𝑒 )

1
+ 𝑦′ (· · · + 𝑦′a(𝑒 )

𝑘
)),

which costs only 𝑘 floating multiplications and 𝑘 floating point

additions. Next, we introduce two auxiliary witnesses 𝑙1, 𝑙2 such

that 𝑙1 = 𝑦 − 𝑓 𝑘𝑒 (𝑦′) and 𝑙2 = 𝛿 · 𝑓 𝑘𝑒 (𝑦′) .
Enforcing the inequality. ZIP proves the inequality |𝑙1 | ≤ |𝑙2 |
which is equivalent to 𝑙2

1
≤ 𝑙2

2
, implying (𝑙1 + 𝑙2) (𝑙2 − 𝑙1) ≥ 0. Thus,

we introduce auxiliarywitness 𝑧3 such that 𝑧3 = (𝑙1+𝑙2) (𝑙2−𝑙1).As a
result, the prover is required to prove 𝑧3 is non-negative. Because 𝑧3
is represented in floating-point form (𝑠, 𝑒, 𝑚̂), non-negativity can be
proved by (𝑠𝑧3 = 0∨𝑚̂𝑧3 = 0) = 1. Together, these constraints prove

the approximation correctness relation |𝑦 − 𝑓 𝑘𝑒 (𝑦′) | ≤ 𝛿 |𝑓 𝑘𝑒 (𝑦′) |.

4.4 Realizing Zero-Knowledge AI Inference
After the server commits to its pre-trained model W and receives a

client’s input X, it performs AI inference and returns the inference

result with a zero-knowledge proof of correct computation. Below,

we describe how each algorithm in our ZIP protocol operates.

• pp← Setup(1𝜆, 𝑙): Given a security parameter 𝜆 and an upper

bound 𝑙 onmodel size, this algorithm constructs the public param-

eters pp. Given the activation function Act, it invokes [21] to in-

terpolate the piecewise polynomial approximation F𝑚,𝑘
, defined

over the set of intervals 𝐼 , with approximation error 𝛿 . The lookup

tables c and c′ are then derived from F𝑚,𝑘
. Next, the algorithm

runs the CP-SNARK setup to obtain pp′ ← CPZKP.Setup(1𝜆). Fi-
nally, it outputs the public parameters as pp = (pp′, c, c′,𝑚, 𝑘, 𝛿).
• ˆcm← Comm(W, 𝑟 , pp): Given randomness 𝑟 , it commits to W
by invoking ˆcm← CPZKP.Comm(W, 𝑟 , pp), and returns cm.

• (𝜋, y) ← Infer(W,X, pp): Upon receiving query data X, it exe-
cutes the inference pipeline locally using the committed model
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W. SinceW and X are in IEEE-754 format, it executes techniques

in §4.1-§4.3 to produce arithmetic constraints 𝜙act for non-linear

layers (e.g., activations). It then adopts the method of [20] to

generates arithmetic constraints 𝜙cnv, 𝜙pl, and 𝜙fc for all linear

operations (e.g., convolution, pooling, fully connected). Next, it

commits to auxiliary witnesses aux (e.g., layer outputs and ac-

tivations) via cm′ ← CPZKP.Comm(aux, 𝑟2, pp), and produces

a proof by calling 𝜋 ′ ← CPZKP.Prov(𝜙,W, pp), where 𝜙 is the

merge arithmetic circuit of 𝜙act, 𝜙cnv, 𝜙pl, 𝜙fc. Finally, it returns

the inference output y with proof 𝜋 := (𝜋 ′, cm′).
• {0, 1} ← Ver(y, cm, 𝜋, pp): Given the inference result y, a com-

mitment cm, and a proof 𝜋 , it parses 𝜋 := (𝜋 ′, cm′) and then

invokes 𝑏 ← CPZKP.Ver(𝜋, cm, y, pp), where cm = ( ˆcm, cm′).

Security. We state the security of ZIP as follows.

Theorem 1 (Security ofZIP). Assuming the back-end CP-SNARK
is secure (per Definition 1), and both the extended lookup argument
and the adapted range proof (based on Caulk [70]) are sound and
zero-knowledge, then ZIP is a secure zero-knowledge ML inference
scheme as defined in Definition 2.

Proof. We establish the completeness, soundness, and zero

knowledge properties followed by composing the security of the

back-end CP-SNARK with Lemmas 1 and 2.

Completeness. In the ZIP protocol, if the server honestly com-

putes ML inference using model W on client input X to produce

output y, the verifier accepts with probability 1. Correctness of

𝑦 in our scheme follows from completeness of the back-end CP-

SNARK, the extended lookup argument, and the adapted range

proof. Specifically, by Lemma 1, the prover can satisfy the extended

lookup constraints by selecting a valid, ordered block of coefficients

from the public polynomial table. By Lemma 2, the prover can also

satisfy the adapted range proof constraints by selecting the correct

interval (𝑡𝑒−1, 𝑡𝑒 ) and proving that 𝑡𝑒−1 ≤ 𝑦′ ≤ 𝑡𝑒 .

Soundness. Suppose a malicious server P∗ produces an accepting

proof for (X, y) with y ≠ ˆF (W,X). By knowledge-soundness of

the back-end CP-SNARK (Definition 1), an extractor exists that

recovers a witness satisfying all circuit constraints. In particular:

• By Lemma 1, the extracted lookup witness must correspond to

exactly one contiguous tuple and valid block of elements in c.
• By Lemma 2, the extracted interval witness must be two consec-

utive endpoints (𝑡𝑒−1, 𝑡𝑒 ) satisfying 𝑡𝑒−1 ≤ 𝑦′ ≤ 𝑡𝑒 .

• The remaining arithmetic constraints then force the correct eval-

uation of both linear and non-linear layers (including the relative

error check), so the extracted witness computes y = ˆF (W′, X)
for the extracted model parametersW′.

Hence we obtain y = ˆF (W′,X), contradicting y ≠ ˆF (W,X).
The only possibility would be W′ ≠ W yet

ˆF (W′,X) = y, im-

plying that P∗ extracted a different modelW′ still satisfying the
proof—contradicting the binding of the commitment scheme. Thus,

no polynomial-time adversary can produce a false accepting proof

except with negligible probability.

Zero-Knowledge. We show that a semi-honest verifier’s view

can be simulated using only the public inputs (X, 𝑦). Let S be the

simulator that proceeds via three hybrids:

• Hybrid 0 (Real). Run the real ZIP protocol: (1) generate the

extended lookup argument and adapted range proof, and (2) pro-

duce the CP-SNARK proof over the full arithmetic circuit, which

includes floating-point operations, polynomial approximation,

indicator-vector logic, and the approximation check.

• Hybrid 1. Replace the extended lookup and range proofs with

simulated proofs that preserve zero-knowledge. Specifically, the

lookup proof is simulated using the position-hiding simulator

for Caulk, along with simulated auxiliary vectors that satisfy

our ordering and block structure constraints. The range proof

is simulated via the arithmetic constraints defined in Lemma 2,

which preserve the privacy of the selected interval. Since our

construction ensures that no information about the selected poly-

nomial piece or interval is leaked to the verifier, the simulated

view is indistinguishable from Hybrid 0.

• Hybrid 2 (Ideal). Replace the CP-SNARK proof with its zero

knowledge simulator. By the zero knowledge property of the

back-end CP-SNARK (Definition 1), the verifier’s view remains

indistinguishable from Hybrid 1.

Since each hybrid transition modifies exactly one component

and remains computationally indistinguishable, the real transcript

(Hybrid 0) is indistinguishable from the fully simulated one (Hybrid

2). Therefore, the verifier learns nothing beyond (X, 𝑦), completing

the zero-knowledge proof. □

5 Experimental Evaluation
5.1 Implementation
We fully implemented ZIP in about 11,000 lines of Python, Go, and

Rust. We used the NFGen library [21, 22] to generate high-accuracy

piecewise-polynomial approximations for non-linear activations,

including GeLU, SeLU, and ELU, as well as other non-linear func-

tions in Softmax and LayerNorm, such as exp(𝑥) = 𝑒𝑥 and 1/
√
𝑥 .

We integrated the Rust-based Caulk library [71] for multi-lookup

arguments and compiled our arithmetic circuits in Go using the

gnark library [6] with the PlonK CP-SNARK protocol [24].

However, the original PlonK protocol [24] initiates proving im-

mediately after committing to model parametersW. Since ZIP re-

quires the server to commit to W in advance and broadcasts the

commitment, we adapted PlonK by decoupling the commitment

phase from the proof generation step. Furthermore, we replaced the

original KZG PC scheme in PlonK, which is computationally hiding

under the discrete logarithm assumption, with the stronger commit-

ment scheme PolyCommitPed introduced in [34]. This new scheme

achieves unconditional hiding under the Strong Diffie-Hellman

(SDH) assumption, preventing disclosure of private model parame-

ters from the broadcast commitment, especially when parameters

are small enough to be brute-forced.

We also reimplemented the LeNet-5 [35] and mini-BERT [59]

inference models to extract all required witnesses for the commit-

and-prove protocol. Our full implementation is publicly available

at: https://github.com/vt-asaplab/ZIP

5.2 Configuration
Hardware. We used a server with a 48-core Intel(R) Xeon(R) Plat-

inum 8360Y CPU (2.40 GHz) and 512 GB RAM.

https://github.com/vt-asaplab/ZIP
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Table 1: Number of R1CS Constraints for IEEE-754 Double-Precision GeLU, SeLU, and ELU: ZIP vs. Baseline (w/AG).

# Acts
GeLU SeLU ELU

ZIP Baseline (w/AG) |C| Gain
† ZIP Baseline (w/AG) |C| Gain

† ZIP Baseline (w/AG) |C| Gain
†

2
0

5.8 × 103 6.8 × 106 1172× 3.7 × 103 2.0 × 106 545× 3.3 × 103 1.9 × 106 569×
2
4

8.2 × 104 1.1 × 108 1326× 5.0 × 104 3.2 × 107 634× 4.5 × 104 3.0 × 107 664×
2
8

1.2 × 106 1.7 × 109 1403× 7.4 × 105 5.1 × 108 687× 6.8 × 105 4.8 × 108 714×
2
12

1.9 × 107 2.8 × 1010 1477× 1.1 × 107 8.1 × 109 743× 9.8 × 106 7.7 × 109 786×
2
16

3.0 × 108 4.5 × 1011 1482× 1.7 × 108 1.3 × 1011 748× 1.6 × 108 1.2 × 1011 791×

† “|C| Gain” indicates how many times smaller ZIP circuit is compared to Baseline (w/AG).

Table 2: Number of PlonK Constraint for IEEE-754 Double-Precision GeLU, SeLU, and ELU: ZIP vs. Baseline (w/AG).

# Acts
GeLU SeLU ELU

ZIP Baseline (w/AG) |C| Gain
† ZIP Baseline (w/AG) |C| Gain

† ZIP Baseline (w/AG) |C| Gain
†

2
0

1.7 × 104 1.7 × 107 1004× 1.2 × 104 5.3 × 106 442× 1.1 × 104 4.8 × 106 452×
2
4

2.3 × 105 2.8 × 108 1227× 1.5 × 105 8.0 × 107 540× 1.4 × 105 7.7 × 107 565×
2
8

3.2 × 106 4.4 × 109 1353× 2.1 × 106 1.3 × 109 602× 1.9 × 106 1.2 × 109 636×
2
12

4.8 × 107 6.2 × 1010 1293× 3.0 × 107 2.0 × 1010 667× 2.7 × 107 1.9 × 1010 707×
2
16

7.6 × 108 9.2 × 1011 1212× 4.7 × 108 2.4 × 1011 590× 4.2 × 108 2.8 × 1011 664×

† “|C| Gain” indicates how many times smaller ZIP circuit is compared to Baseline (w/AG).

System Parameters. We performed all computations in ZIP us-

ing IEEE-754 double-precision (64-bit) floating point. We interpo-

lated piecewise-polynomial approximations of ELU
2
, SeLU

3
, and

GeLU
4
by sampling each function at 1,000 points over the domains

[−30, 30], [−30, 30], and [−5, 5], respectively. For ELU, we used

𝑚 = 7 polynomial pieces of degree 𝑘 = 6 (public table size |c| = 36,

|c′ | = 7, private vector size |a| = 6, |a′ | = 2) with the approximation

error 𝛿 = 9×10−4. For SeLU, we employed𝑚 = 6 polynomial pieces

of degree 𝑘 = 7 (|c| = 35, |c′ | = 6, |a| = 7, |a′ | = 2) with 𝛿 = 9×10−4.
For GeLUwe used𝑚 = 8 of degree 𝑘 = 10 (|c| = 70, |c′ | = 8, |a| = 10,

|a′ | = 2) with 𝛿 = 9 × 10−2. Outside these intervals, we clamped

inputs to the nearest polynomial piece [32]. We configured gnark
to use the BN254 elliptic curve for all PlonK CP-SNARK proofs.

Counterpart Comparison andEvaluationMetrics.To our knowl-
edge, no prior work has provided precise zero-knowledge proofs

for IEEE-754–compliant non-linear activation functions within an

AI inference pipeline. We therefore benchmarked ZIP against three

baselines, evaluating both performance (proving and verification

time) and precision of activation proofs for GeLU, SeLU, and ELU:

• Baseline (w/AP): We replaced each non-linear activation with

its piecewise-polynomial approximation (error bound 𝛿) and ex-

ecuted the network end-to-end in IEEE-754 double-precision.

• Baseline (w/FP): We retained actual non-linear activations but

used fixed-point arithmetic throughout the network.

• Baseline (w/AG):We treated ELU, SeLU, andGeLU as full IEEE-754

double-precision operations, hardcoded directly into the arith-

metic circuits using state-of-the-art gadgets for square root [20],

𝑡𝑎𝑛ℎ [65], and IEEE-754 addition/multiplication [3].

2
ELU𝛼 (𝑥 ) =

{
𝑥, 𝑥 ≥ 0

𝛼 (𝑒𝑥 − 1), 𝑥 < 0

3
SeLU𝜆,𝛼 (𝑥 ) = 𝜆

{
𝑥, 𝑥 ≥ 0

𝛼 (𝑒𝑥 − 1), 𝑥 < 0

4
GeLU(𝑥 ) = 𝑥

2

[
1 + erf

(
𝑥√
2

) ]
≈ 𝑥

2

[
1 + tanh

(√︃
2

𝜋
(𝑥 + 0.044715𝑥3 )

) ]

We selected GeLU, SeLU, and ELU because they (1) are widely

adopted in modern, state-of-the-art AI models and (2) incur signifi-

cant arithmetic circuit overhead.We used the same PlonKCP-SNARK

backend [24] for both ZIP and Baseline (w/AG).

5.3 Overall Results
Constraint Complexity. Table 1 reports the total number of R1CS

constraints for proving IEEE-754 double-precision GeLU, SeLU, and

ELU in ZIP and Baseline (w/AG) (i.e., directly hardcoded into the

arithmetic circuit). Across all activation counts, ZIP achieves a 2–3

order of magnitude reduction in circuit complexity. Specifically, for

proving a single GeLU activation, ZIP uses only 5.8× 103 R1CS con-
straints compared to 6.8×106 in Baseline (w/AG)-a 1,172× decrease.
Even at 2

16
activations, ZIP maintains a 1,482× improvement, re-

ducing from 4.5× 1011 to 3.0× 108 R1CS constraints. SeLU and ELU

show similarly large gains, with ZIP requiring 545×–748× fewer

R1CS constraints for SeLU and 569×–791× fewer for ELU.

As shown in Table 2, in the PlonK setting, ZIP achieves com-

parable gains. For a single GeLU activation, the number of PlonK

constraints drops from 1.7× 107 to 1.7× 104, a 1,004× improvement

over Baseline (w/AG), and remain over 1,212× more efficient at

2
16

activations. SeLU and ELU likewise require 442×–664× fewer
PlonK constraints across all scales. Additionally, each activation

proof in ZIP leverages two multi-lookup arguments to amortize

polynomial evaluations without significant overhead.

Figure 1 illustrates the per-activation R1CS and PlonK constraint

savings in ZIP for IEEE-754 double-precision GeLU, SeLU, and ELU.

Thanks to shared subexpressions, the cost to prove each activation

steadily decreases as the number of invocations grows. Specifi-

cally, to prove a single GeLU activation ZIP requires 5,830 R1CS

constraints, which decreases to 4,599 at 2
14

activations, about 21%

reduction. Similarly, SeLU falls from 3,670 to 2,649 (28%), and ELU
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Figure 1: Per-activation constraint counts (R1CS and PlonK) for
double-precision IEEE754–compliant GeLU, SeLU, and ELU in ZIP ac-
cording to the number of activations.

from 3,341 to 2,389 (29%). Regarding PlonK constraints, GeLU de-

creases from 17,112 to 11,654 (32%), SeLU from 11,687 to 7,195 (38%),

and ELU from 10,660 to 6,490 (39%).

Impact of Precision. We quantify precision loss when the true

activation functions are replaced by their piecewise polynomial

approximations or by fixed-point implementations, while keeping

all other hyperparameters identical. We used the UTKFace dataset

[74], which contains over 20,000 face images (200×200) labeled by

age (0–116), gender, and ethnicity. These images were fed to an

adapted CNN from [44] with approximately 250K parameters (5

convolutional, 5 pooling, and 3 fully connected layers). We used

Mean Absolute Error (MAE) as the performance metric that indi-

cates the average absolute difference between each predicted value

and its true label over all test samples.

As shown in Table 3, our full-precisionZIPmodel–using IEEE-754

double-precision floating point and the native ELU activation–

achieves an average test MAE of 6.15. Even with only seven activa-

tion layers and a small approximation error bound 𝛿=0.0009, substi-

tuting the actual ELU with its piecewise polynomial approximation

(i.e., Baseline (w/AP)) raises the MAE by 2–5%, which indicates

a loss of precision. Moreover, Table 3 shows that quantizing all

weights and inputs to fixed-point representation while retaining

the actual ELU activation function (i.e., Baseline (w/FP)), the MAE

increases significantly, demonstrating that fixed-point arithmetic

severely degrades accuracy and prevents convergence.

Comparison with Prior Non-Linear Arguments under Fixed-
Point Representation. ZIP employs lookup table arguments to

prove non-linear activations under IEEE-754 floating-point seman-

tics. While some prior works also employ lookup tables to support

non-linear activations [29, 40, 56], they operate under fixed-point

representation. Although targeting a different numerical format

and not directly comparable, we provide a conservative comparison

to highlight the distinctions and implications of our design.

The works in [29, 40, 56] introduce efficient ZKP techniques for

non-linear activations by encoding model parameters and inputs

as fixed-point values, trading precision for lower proving cost. For

example, as shown in Table 4, proving oneGeLU activation takes 240

ms in ZIP, compared to 0.38 ms in [29] and 0.025 ms in [40]. These

fixed-point schemes incur quantization errors, whereas ZIP proves

IEEE-754 double-precision computation of GeLU activations.

Table 3: Impact of Numerical Format on ELU Evaluation.

Configuration Avg. Test MAE

ZIP (IEEE-754 double-precision) 6.16

Baseline (w/FP) (fixed-point) no convergence

Table 4: ZIP vs. Prior Fixed-Point Methods for GeLU.

P(ms) / GeLU LUT Entries
†

Numeric Representation

ZIP 240 70 IEEE-754 double

Hao et al. [29] 0.38 4, 096 Fixed-point

Lu et al. [40] 0.025 ∼ few ×100 Fixed-point

Sun et al. [56] n/a 65, 536 Fixed-point

† “LUT” denotes the maximum lookup-table size used in the protocol.

Beyond precision loss, non-linear arguments under fixed point

representation may require large lookup tables for complex acti-

vations. For example, in [29], inputs are decomposed into small

digits, and operations such as exponentiation, division, reciprocal,

and square root are proved via multiple lookup tables. Although

this method can be applied to many complex activations, it relies

on fixed-point representation and requires constructing multiple

lookup tables with 4,096 entries, with the proof overhead growing

substantially as activations becomemore complex. Lu et al. [40] pro-

pose a VOLE-based ZKP framework that reduces bit-decomposition

overhead by encoding non-linear layers as range and lookup proofs

over exponent tables with several hundred entries. Sun et al. [56]

present tlookup, a parallel lookup argument for non-arithmetic

tensor operations (e.g., activations) that reduces each operation to

lookup arguments over paired input/output tables. However, their

approach requires large tables with 65,536 entries.

5.4 Evaluation on Full AI Inference Pipelines
We evaluate the performance of our proposed techniques on com-

plete AI inference pipelines. We selected LeNet-5 and mini-BERT

models, which are mostly used for image classification and senti-

ment analysis, respectively.We also evaluate the impact of precision

loss incurred by fixed-point arithmetic on mini-BERT.

Datasets and Model Parameters. For LeNet-5 [35], we used the

MNIST dataset [17]. The model has roughly 60 K parameters (3

convolutional, 2 pooling, and 2 fully connected layers). We applied

GeLU, SeLU, or ELU activations after every convolutional and fully

connected layer. For mini-BERT [59], we used the SST-2 dataset [54],

which comprises 67 K movie-review sentences labeled as positive

or negative. The model has 4 layers, hidden size 256, containing

around 11 M parameters. We represented all data in both datasets

in the IEEE-754 double-precision format.

Experiments on LeNet-5.We measure end-to-end proving and

verification time of ZIP on the LeNet-5 [35] using actual GeLU,

SeLU, and ELU activation functions in IEEE-754 double precision.

As Table 5 shows, total proving times for the four non-linear

layers are 19.78 min for GeLU, 15.02 min for SeLU, and 13.16 min

for ELU, while verification remains stable at approximately 5.8

min across all three activation functions. To reduce circuit size for

the linear layers, we use random linear combinations (RLC) from

[25, 59] with a small relative tolerance to handle IEEE-754 round-

ing. Without RLC and thus preserving full numerical precision,
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Table 5: Performance of ZIP on LeNet-5 using MNIST dataset.

GeLU SeLU ELU

P (min)V (min) P (min)V (min) P (min)V (min)

1
st
Act 13.89 4.21 11.19 4.19 9.30 4.23

2
nd

Act 5.23 1.43 3.49 1.43 3.42 1.43

3
rd
Act 0.37 0.11 0.25 0.11 0.24 0.11

4
th
Act 0.29 0.07 0.19 0.07 0.19 0.07

All linear layers
†

0.89 0.07 0.89 0.07 0.89 0.07

Total 20.67 5.89 15.91 5.87 13.94 5.91

† All linear operations are proved via [20].

Table 6: Impact of Numerical Format on mini-BERT Accuracy.

Configuration Avg. Accuracy (%)

ZIP (IEEE-754 double-precision) 85.65

Baseline (w/FP) (fixed-point) 77.14

Table 7: Performance of ZIP on mini-BERT using SST-2 Dataset.

Component P (hr) V (hr)

GeLU 2.44 0.73

Softmax
†

0.09 0.03

LayerNorm
†

0.003 0.001

All linear layers
‡

34.53 0.09

Total 37.06 0.85

† Times for Softmax and LayerNorm include only non-linear operations

(exp and 1/
√
𝑥 ); their linear operations are counted under “linear layers”.

‡ All linear operations are proved via [20].

end-to-end proving takes 40, 42, and 47 min for GeLU, SeLU, and

ELU, respectively. In total, ZIP uses 32,451,489 R1CS constraints

(resp. 66,133,656 PlonK constraints) for GeLU, 19,749,473 R1CS (resp.

54,765,423 PlonK) for SeLU, and 15,703,492 R1CS (resp. 42,887,728

PlonK) for ELU, and employs two multi-lookup arguments per

activation with four pairing per lookup proof during verification.

Experiments on mini-BERT. We first evaluate the impact of nu-

merical representation on the accuracy performance of mini-BERT

[59] over the SST-2 dataset [54]. As shown in Table 6, the model

(trained for 2 epochs on SST-2) achieves 85.65% accuracy under the

IEEE-754 double precision. Representing all model parameters and

inputs in fixed-point reduces accuracy to 77.14%. This indicates that

fixed-point representation incurs precision loss in the mini-BERT

model and negatively impacts its inference performance.

We then report the end-to-end proving and verification time of

ZIP on mini-BERT inference with the SST-2 dataset, employing

IEEE-754 double-precision implementations of GeLU, Softmax, and

LayerNorm. Accordingly, we first interpolate piecewise-polynomial

approximations of the non-linear operations exp(𝑥) and 1/
√
𝑥 ,

which appear in Softmax and LayerNorm. Each function is sampled

at 1,000 points over the domains [−8, 20] and [0.001, 210], respec-
tively. For exp(𝑥) we use𝑚 = 11 polynomial pieces of degree 𝑘 = 7

(|c| = 70, |c′ | = 11, |a| = 7, |a′ | = 2) with 𝛿 = 9 × 10−3. For 1/
√
𝑥

we employ 𝑚 = 23 polynomial pieces of degree 𝑘 = 4 (|c| = 88,

|c′ | = 23, |a| = 4, |a′ | = 2) with 𝛿 = 9 × 10−3.
As shown in Table 7, using ZIP to prove non-linear layers under

IEEE-754 semantics results in prover times of 2.44 hr for GeLU, 0.09

hr for Softmax, and 0.003 hr for LayerNorm. The corresponding

verification times are 0.73 hr, 0.03 hr, and 0.001 hr, respectively.

To complete the proof for the full inference pipeline, we directly

apply the method from [20] to handle all remaining linear layers, in-

cluding self-attention projections, output projections, feed-forward

linears, and the classification head, which together require 37.06 hr

to prove and 0.85 hr to verify.

Discussion. Although ZIP significantly reduces circuit size for

non-linear activations compared to directly hardcoding them into

circuits, its end-to-end delay for full AI inference remains high (Ta-

ble 5, Table 7). We emphasize that our prototype is just a proof of

concept to demonstrate correctness and feasibility, not performance

optimization. Neither our implementation nor the ZKP libraries (i.e.,

gnark [6], Caulk [71]) were tuned for efficiency, and all reported

results were obtained on a general-purpose CPU server without

the hardware acceleration typically used in ML research. However,

several approaches can be applied to ZIP to further reduce its la-

tency and improve practicality, including distributed computation,

hardware acceleration, and ZKP algorithmic improvements.

Specifically, we can consider distributed-prover architectures

such as DIZK [68]. Because PlonK’s prover and Caulk’s preprocess-

ing both rely on large Fast Fourier Transforms (FFTs) and Multi-

Scalar Multiplications (MSMs), these compute-intensive kernels can

be parallelized across many compute nodes instead of executing

the entire zkSNARK prover on a single machine. This approach

enables the prover to harness the combined compute power and

memory of multiple machines, thereby overcoming single-node

limitations. Since ZIP instantiates arithmetic circuits and lookup

arguments using PlonK and Caulk, respectively, it inherits these

benefits directly. Systems such as Pianist[37] further demonstrate

how to restructure PlonK-style provers for highly parallel execution

with minimal inter-node communication. By replacing univariate

constraints with bivariate ones, sub-provers can process disjoint

sub-circuits independently, while a master aggregator collects their

constant-size commitments to form the final proof. We expect 100×
latency reduction under these distributed architectures.

Another orthogonal approach to reduce latency is to explore

hardware acceleration techniques. For instance, FFTs and MSMs

parallelize well on GPUs, and prior work has demonstrated at least

a 5× speedup in proving and a 2× speedup in verification [41, 42].

Beyond GPUs, FFT and MSM kernels can be mapped onto FPGA

datapaths [8, 47] or implemented in custom ASICs [15, 16, 53]. This

may lead to a reduction of proving time by two orders of magnitude

(e.g., 600×) compared with our CPU baselines.

Taking these optimizations together, we expectZIP to achieve cu-

mulative improvements of several orders of magnitude, potentially

reducing the concrete latency to the order of seconds, thereby mak-

ing ZIP more practical. Such improvements open the door to sup-

porting real-world AI inference with multi-million-parameter mod-

els (e.g., ResNet-50 [30], BERT-Base [18], GPT-2 [48], and RoBERTa-

base [39]). Finally, our proposed relative-error method is generic

and can be adopted with newer proof systems. As ZKP research

advances with more efficient constructions (e.g., HyperPlonk [11]

over PlonK), ZIP can potentially benefit from these algorithmic

improvements, making the concrete delay more acceptable.

6 Related Work
Verifiable ML ensures ML computations are executed correctly, en-

abling clients to outsource training/inference to untrusted servers
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while still verifying correctness. The two main approaches are (1)

verifiable computation (VC) and zero-knowledge proofs (ZKPs) over

finite fields [7, 9, 13, 24, 27, 45, 62]; and (2) trusted execution envi-

ronments (TEEs) [14], which run native floating-point instructions

inside secure hardware enclaves. TEEs often run faster but require

hardware trust and remain vulnerable to side-channel attacks.

Research in verifiable ML spans classic and deep models (e.g., de-

cision trees, linear/SVMs, DNNs) [23, 28, 36, 38, 50, 55, 64–67, 72, 75],

and falls into two broad categories. The first focuses on enhancing

proof efficiency (e.g., circuit size, proving/verification time), partic-

ularly for non-linear computations, by approximating or precom-

puting activations in fixed-point representation or by employing

large lookup tables [12, 29, 40, 56]. Approximation approaches re-

place activations with low-degree polynomials or piecewise-linear

approximations [2, 25, 28, 75]. These methods reduce proving time

and circuit size for non-linear computations but trade off numerical

precision or introduce large table-storage requirements. The second

targets proof precision for non-linear functions, also in fixed-point

arithmetic. These systems construct linear building blocks (e.g.,

gadgets) for each activation [23, 36, 65], employ bit-decomposition

[38, 65], or use interactive protocols that offload complex acti-

vations to the client [50] to avoid large circuits. Although they

preserve higher-precision semantics for non-linear computations,

these methods yield larger circuits, higher proving/communication

costs, and often support only a narrow set of activations. Beyond

inference/training, verifiable techniques has been applied to secure

aggregation in federated learning [5, 69] and privacy-preserving

inference [50, 67].

7 Conclusion
We presented ZIP, a zero-knowledge proof framework for AI infer-

ence with full IEEE-754 double-precision support. Our approach

enables efficient, bounded-error proofs of non-linear activations

and closes security gaps. Through targeted circuit optimizations,

we shrink non-linear layer proofs by orders of magnitude, moving

toward practical deployment of precise floating-point AI inference.
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