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Abstract—Certificate revocation is essential for maintaining
the security of the Public Key Infrastructure (PKI), ensuring
that compromised or untrustworthy certificates are invalidated
promptly. Traditional revocation mechanisms like Certificate
Revocation Lists (CRLs) and the Online Certificate Status Pro-
tocol (OCSP) face significant challenges, including scalability
issues, high bandwidth consumption, privacy concerns, and
reliance on centralized infrastructure that can become points
of failure.

In this paper, we introduce AccuRevoke, a novel re-
vocation scheme that leverages cryptographic accumulators
and edge computing to address these challenges effectively.
AccuRevoke enables clients to verify the revocation status of
certificates efficiently without the need to contact Certificate
Authorities (CAs) directly for each validation. By utilizing
distributed accumulators and threshold cryptography, Ac-
cuRevoke ensures authenticity and integrity of revocation
information, even when responses are generated by third-party
Edge Compute Providers (ECPs).

Our scheme significantly reduces bandwidth consumption
by providing compact revocation proofs—approximately 21
bytes for membership proofs and 61 bytes for non-membership
proofs—which are substantially smaller than traditional OCSP
responses. To further optimize performance, especially in gen-
erating non-membership witnesses, we employ GPU accelera-
tion, achieving considerable improvements in processing times.

We compare AccuRevoke with existing revocation mech-
anisms, demonstrating advantages in bandwidth efficiency,
reliability, auditability, and potential enhancements in privacy.
Our evaluation shows that AccuRevoke offers a scalable
and practical solution for revocation checking, improving the
security and performance of TLS/PKI deployments. We plan
to open-source our design and implementation to facilitate
adoption and encourage further research in this area.

1. Introduction

Transport Layer Security (TLS) and the Public Key
Infrastructure (PKI) are foundational to secure Internet com-
munications, enabling authenticated and encrypted interac-
tions between clients and servers. A critical component of
this ecosystem is the ability to revoke certificates that have
been compromised [43[] or are no longer trustworthy [4].

Effective certificate revocation mechanisms are essential for
maintaining the integrity and security of TLS/PKI deploy-
ments. However, disseminating revocation information at
scale poses significant challenges due to the vast number
of certificates and the associated performance overhead.

Traditional methods for certificate revocation, such as
Certificate Revocation Lists (CRLs) [9] and the Online
Certificate Status Protocol (OCSP) [39], suffer from scal-
ability and latency issues. CRLs can become excessively
large as the number of revoked certificates grows, leading
to increased bandwidth consumption and delayed updates.
OCSP provides real-time revocation status but introduces
latency due to the need for clients to query OCSP responders
for each certificate validation. To mitigate these challenges,
many Certificate Authorities (CAs) have leveraged third-
party services for distributing revocation information.

Content Delivery Networks (CDNs) have historically
been employed to enhance the scalability and performance
of revocation information dissemination. For example, Let’s
Encrypt utilizes Akamai’s CDN services to distribute its
CRLs and OCSP responses [25]]. Similarly, Mozilla’s CR-
Lite [28]], which compresses revocation information using
Bloom filters, relies on Akamai’s CDN to distribute these
filters to clients [21]].

While CDNs improve availability and distribution effi-
ciency, their function as reverse proxies introduces inher-
ent limitations. Since CDNs forward requests to the origin
server, the origin server (i.e., the CA’s infrastructure) must
maintain near-perfect uptime—which, in practice, often falls
short [[11]]. If the CA’s origin server becomes unavailable due
to outages or maintenance, the CDN cannot serve OCSP
responses unless the data is cached, potentially leaving
clients unable to verify certificate revocation status. This
dependency implies that, despite leveraging CDNs, the sys-
tem’s availability remains tightly coupled with the origin
server’s reliability.

To address this limitation, some CAs have adopted del-
egated OCSP responder certificates [31]], allowing CDNs to
generate and sign OCSP responses directly without needing
to contact the origin server for each request. While this
approach improves availability by reducing dependency on
the origin server, it introduces new trust assumptions into
the PKI model. Specifically, it extends the CA’s trust bound-
ary to include third-party CDNs, which are not traditional



authentication authorities. If a CDN is compromised, it
could issue fraudulent OCSP responses, and clients would
be unable to detect such tampering due to the lack of
mechanisms for independent verification. This shift raises
concerns about the integrity and security of the revocation
process, as it relies on entities outside the established trust
framework of the PKI.

In recent years, CDNs have evolved into edge computing
providers [40]], offering computational capabilities at the
edge of the network. Platforms such as Cloudflare Workers
[16] and Fastly Compute@Edge [20] not only distribute
content efficiently but also perform computations close to
the clients. These edge computing providers, being also
CDNs, can compute and deliver results rapidly, combining
the benefits of content distribution and edge computation.
This evolution opens new opportunities to rethink how
revocation information is disseminated and verified.

We posit that leveraging edge computing can address
the limitations of traditional revocation mechanisms. By
deploying computational logic at the edge, third parties can
participate in secure protocols without compromising trust.
Specifically, we can empower edge servers to collaboratively
generate cryptographic proofs of certificate revocation sta-
tus, enhancing both performance and security.

In this paper, we propose a novel revocation system, Ac-
cuRevoke, that utilizes cryptographic accumulators [|10] in
conjunction with edge computing. A cryptographic accumu-
lator is a compact data structure that allows one to succinctly
represent a set of elements and efficiently prove whether
an element is a member (revoked) or a non-member (non-
revoked) of the set. Importantly, the size of the accumulator
remains constant regardless of the number of elements it
contains, making it an attractive option for handling large
revocation datasets.

However, traditional accumulator schemes typically as-
sume a trusted first party (accumulator manager) responsi-
ble for maintaining the accumulator and generating proofs,
which is not ideal in a distributed environment involving
third-party entities. By harnessing edge computing, we can
distribute the computational tasks required for witness gen-
eration among multiple edge servers. This distribution not
only improves performance by leveraging the computational
power of edge servers but also enhances security by ensuring
that no single entity holds the entire secret required to
generate valid proofs.

Our contributions are threefold:

e Design of a Distributed and Auditable Accumula-
tor: We introduce an accumulator framework where
multiple edge compute providers collaboratively gen-
erate membership and non-membership proofs. Each
provider holds a share of the secret key—using tech-
niques like Shamir’s Secret Sharing—rather than the
entire secret. This ensures that no single compromised
edge server can generate valid proofs on its own. By
working together, the edge servers can generate the
necessary proofs without direct communication with
the CA. Our scheme also enables clients and the CA to
audit the authenticity of the proofs, ensuring that any

incorrect information provided by third parties can be
detected and mitigated.

o Leveraging Edge Computing for Scalability and
Performance: By utilizing the computational capabili-
ties of edge servers, our system reduces latency and im-
proves the responsiveness of revocation checks. Clients
can obtain proofs from nearby edge servers, minimizing
network delays. The ability to process computations
at the edge allows the system to scale effectively,
handling a large number of revocation queries without
overloading central servers.

o Performance Optimization through Parallelism:
Recognizing the computational challenges associated
with accumulators, particularly for generating non-
membership proofs, we optimize our accumulator de-
sign for parallel computation. By leveraging the in-
herent parallelism in cryptographic operations, we im-
plement our scheme on GPUs at the edge. Our im-
plementation demonstrates that the time to generate
non-membership proofs is significantly reduced. This
addresses a common criticism of accumulator-based
systems concerning their scalability and performance.

We validate our proposed system through rigorous anal-
ysis and experimental evaluation. Our results indicate that
the distributed accumulator not only enhances the security
and trustworthiness of revocation information dissemination
but also achieves practical performance suitable for real-
world deployment. By integrating edge computing into the
PKI infrastructure, we provide a pathway for more secure
and efficient certificate revocation mechanisms.

To foster reproducibility and further research into im-
proving the TLS revocation ecosystem, we publicly release
our implementation code to the research community at

https://accurevoke.netsecurelab.org

2. Background

In this section, we provide a brief background on cer-
tificates, detail the protocols for certificate revocation used
in practice, and cryptographic foundations underlying our
proposed scheme, AccuRevoke.

2.1. Certificates

Digital certificates are fundamental components of web
security, serving to establish a trusted association between
entities—typically domain names—and their cryptographic
public keys. Issued by Certificate Authorities (CAs), these
certificates enable clients to verify the identity of servers
and establish secure communications over the Internet.

Certificates are organized into a hierarchical chain of
trust, starting from a self-signed root certificate, followed
by intermediate certificates, and culminating in the leaf cer-
tificate presented by the server during the TLS handshake.
Each certificate in the chain is validated by verifying the
digital signature of its issuer, ensuring that it was issued
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by a trusted authority and has not been tampered with.
Validation also involves checking the certificate’s validity
period, confirming that it has not expired, and determining
whether it has been revoked prior to its expiration date.

The de facto standard for web certificates is defined by
the X.509 specification, which outlines the structure and
encoding of certificates using Abstract Syntax Notation One
(ASN.1) [91, [19].

2.2. TLS Certificate Revocation in Practice

Numerous solutions have been proposed to enhance the
revocation system [12], [13], [37]], [41], [42]; however, in
practice, three main revocation protocols are predominantly
used, encompassing all revocation information.

2.2.1. Certificate Revocation Lists (CRLs). CRLs are
ASN.1-encoded files maintained by CAs that contain a list
of revoked certificates [9]. Each entry in a CRL includes
the certificate’s serial number, the revocation timestamp, and
the revocation reason. CAs include a URL in the certificate’s
CRL Distribution Points extension, allowing clients to locate
and download the CRL associated with a certificate.

CAs are responsible for publishing updated CRLs reg-
ularly, even if no new certificates have been revoked, to
ensure that the validity period remains current.

However, CRLs are often criticized for their inefficiency.
Clients must download the entire CRL even if they are only
interested in the revocation status of a single certificate.
This can result in significant bandwidth consumption and
increased latency during certificate validation. Prior work
has demonstrated that CRLs can be quite large, with some
exceeding 76 MB in size [30].

2.2.2. Online Certificate Status Protocol (OCSP). To
address the limitations of CRLs, the OCSP [39] enables
clients to obtain the real-time revocation status of specific
certificates. Clients use the Authority Information Access
(AIA) extension in certificates to locate the OCSP respon-
der’s URL. An OCSP request includes the certificate’s serial
number and issuer information, allowing CAs to verify the
request. The responder provides a signed response indicating
the certificate’s status (Good, Revoked, or Unknown) and va-
lidity period. OCSP reduces data transfer compared to CRLs
but introduces additional latency due to the extra network
request during the TLS handshake. It also raises privacy
concerns, as OCSP requests can reveal clients’ browsing
habits to CAs.

To address these issues, OCSP Stapling [3]] was intro-
duced, allowing web servers to periodically fetch OCSP
responses from the CA and include them in the TLS hand-
shake. Additionally, the OCSP Must-Staple extension was
designed to enforce the use of OCSP stapling. However,
studies have shown that only a small fraction of servers
support OCSP stapling, many of which are misconfigured,
and an even smaller proportion of certificates include the
Must-Staple extension [11].

2.2.3. CRLite. Unlike traditional methods where clients
retrieve revocation status directly from CAs, CRLite [28]
leverages Mozilla—a third-party client entity—to collect
revocation information from all CAs and push it to the client
browsers. Mozilla aggregates revocation data by monitoring
Certificate Transparency logs and collecting revocation in-
formation from various CAs. The aggregated data is then
compressed using CRLite’s Bloom filter structures and dis-
tributed to Firefox users through browser updates.

By integrating CRLite into Firefox, clients can perform
revocation checks locally without additional network re-
quests during the TLS handshake.

2.3. Roles of CDNs in Dissemination of Revocation
Status

CAs commonly use CDNs to host and distribute their
CRLs and facilitate OCSP responses; for example, Let’s
Encrypt and Certum rely on Akamai’s CDN services, while
Sectigo, ComodoCA, and GlobalSign utilize Cloudflare for
their OCSP endpoints [25]. Traditionally, CDNs act as re-
verse proxies for OCSP responses, forwarding client re-
quests to the CA’s origin server. Due to security concerns,
CAs typically do not allow CDNs to sign OCSP responses
on their behalf. This reliance on the origin server introduces
a single point of failure: if the origin server experiences
downtime, the CDN cannot serve OCSP responses, leaving
clients unable to verify certificate revocation status [11].

To improve availability, some CAs (e.g., TrustCor or
WISeKey) use delegated certificates [31]] to allow CDNs
to sign OCSP responses without accessing the CA’s main
signing keys. While this reduces dependency on the origin
server, it extends the CA’s trust boundary to third-party
CDN:s, raising security concerns about potential misuse or
compromise of delegated keys. Additionally, response sizes
increase due to the inclusion of the delegate certificate. A
recent solution, CRLite [28|], compresses revocation infor-
mation using Bloom filters, in practice, Mozilla integrates
CRLite into Firefox and distributes filter cascades or delta
updates through Akamai’s CDN [21]]. While CAs can audit
these filters, clients rely on pre-generated data without the
ability to independently verify its completeness or correct-
ness, introducing a trust assumption on Mozilla.

These methods highlight a trade-off between availability
and trust. Delegating signing authority to CDNs enhances
availability but raises security concerns; client-side solutions
like CRLite depend on third parties and limit clients’ ability
to verify revocation data independently.

To address these challenges—ensuring availability, au-
thenticity, and integrity even during origin (i.e., , CA) server
outages—and to harness the potential of edge computing
providers, we propose a new approach. By leveraging cryp-
tographic techniques such as Secure Multiparty Computa-
tion (MPC) and cryptographic accumulators, we design a
distributed and secure revocation system.

The following background introduces these crypto-
graphic concepts, which are foundational to our proposed
solution.




Algorithm 1 Shamir Secret Sharing Scheme

Algorithm 2 Finding the Share of the Inverse

({a)1,...,{a)e) < SSS.Create(r,t — 1): Create I-private
shares of o s
(aty...,a¢-1) < Fp

fori=1,...,¢do ‘
(a)i o+ a; 2]
return ({a)1,...,{a)s)

E

2.4. Secure Multiparty Computation

Secure multi-party computation (MPC) allows multiple
parties to jointly compute a function over their inputs while
keeping those inputs private. A key cryptographic primitive
in MPC is Shamir Secret Sharing, which provides a secure
method for distributing and reconstructing secrets. The fol-
lowing section details its underlying mechanism.

2.4.1. Shamir Secret Sharing. We recall shamir secret
sharing [38]], where a secret is divided into multiple shares.
No less than threshold number of shares reveal any infor-
mation about the secret.

In Algorithm |1} we produce [ shares of the secret value «
based on a polynomial of degree t — 1, where ¢ denotes the
minimum number of data points required to reconstruct the
secret. To construct this polynomial, we randomly select t—1
coefficients from the finite field IF,. These coefficients, to-
gether with the secret o as the constant term, fully define the
polynomial. Each share is then obtained by evaluating the
polynomial at unique, non-zero identities ¢ in {1,2,...,1}
This setup ensures that any subset of ¢ shares suffices to
recover the secret, while subsets smaller than ¢ reveal no
information about «.

When a secret is shared among multiple parties using
Shamir secret sharing scheme, Lagrange interpolation is a
fundamental method used to reconstruct a secret from at
least threshold number of shares. Each party holds a share,
and given threshold or more distinct data points where the
secret share is the value of the evaluation of the polynomial
and the evaluation point is a public value which denotes the
identity of the secret holder. The Lagrange polynomial g(z)
is computed as

g(z) <+ Lagrangelnterpolation ({(x;, (a)z,)}_;)
Given ¢ distinct data points, it returns a Lagrange
polynomial ¢(x) of degree at most ¢ — 1 where

9(x) = Tica (e, - Thejse =2
#i

J

2.4.2. Computation of Share of Multiplicative Inverse.
Each participating party can efficiently and securely deter-
mine its share of the multiplicative inverse of an element
using its own share of the secret.

In Algorithm [2] each party utilizes its secret share,
denoted as (), to compute the share of the multiplicative
inverse of a combined element, x + «, where x is a public
value and « is secret-shared. The resulting share of the
inverse is denoted as (s).

—1

(s) < InvSharesElement({«), z) : Compute share of (z + )

1: (r) < Share of pre-computed random element r
2: (2) + x + ()

3: (p) + (r)XI(z)

4: p open (p)

5:(s)«—p " - (r)

6: return (s)

The secure and efficient multiplication of shares, (r)
and (z), denoted as [X] in Algorithm [2| leverages Beaver’s
trick [1]. Here, (z) represents the share of the element z+«,
and (r) represents the share of a random, precomputed
element r. This multiplication is performed using Beaver
multiplication triples (a, b, ¢), where ¢ = a-b is precomputed
during an offline phase.

The shares of Beaver’s triple, (a), (b, (c), are generated
and distributed among all parties in the MPC setup. The
objective of this multiplication [X] is to compute the share
of r - z for each party in an efficient and secure manner.

Each party computes:

(u) = (r) = {a),
(v) = (2) = (b),

using their respective shares. Then, the values w and v
become public after opening. Utilizing these public values,
u and v, along with their shares of Beaver triples, each party
computes its share of r - z as:

(p) = wo + u(b) +v{a) + (c).

When any party opens p, where p = r - z, no party can
infer any information about z because it is securely masked
by r.

2.5. Accumulator

Cryptographic accumulators have seen substantial inter-
est over the decades as a means of creating compact, binding
commitments which we call the value of the accumulator
from a set of elements.

2.5.1. Dynamic Universal (threshold) Secret-shared Dis-
tributed Accumulator. An accumulator that generates short
membership and non-membership witnesses for verifying
element inclusion or exclusion is called a universal accu-
mulator. If it supports both the addition and deletion of
elements, it is referred to as a dynamic accumulator.

A dynamic universal accumulator requires a secret key,
known only to the accumulator manager, to securely add
or remove elements and generate membership or non-
membership witnesses. Building on this concept, a dis-
tributed accumulator employs (MPC) to share the secret
key among multiple managers [22]]. This approach ensures
that no single entity has full control or knowledge of the
secret key, thereby preserving privacy and security. Such
distributed accumulators can operate in a threshold-based



manner using Shamir’s Secret Sharing, allowing collabora-
tive operations such as element addition, deletion, and proof
generation, even if some participants are unavailable. This
ensures both resilience and functionality.

In this paper, we extend the concept of a Dynamic
Universal (threshold) Secret-Shared Distributed Accumu-
lator [22]] by introducing a hybrid architecture with dis-
tinct roles for a master accumulator manager (first party
i.e., CA) and multiple edge servers (servant accumulator
managers). Unlike prior work [22] where all accumulator
operations—including addition, deletion, and witness gen-
eration—were performed in a fully distributed manner, our
design assigns specific tasks to two separate entities.

The CA, acting as the master accumulator manager,
holds the secret key and is trusted to handle critical opera-
tions such as initializing the accumulator, securely managing
element addition and deletion, and distributing secret key
shares to the edge servers. By centralizing these tasks, the
CA reduces operational complexity while ensuring secure
and reliable management of the accumulator.

To decentralize control of witness generation, the CA
delegates this responsibility to multiple edge servers. The
edge servers, operating in an MPC setting, collaboratively
generate membership and non-membership witnesses using
the secret key shares provided by the CA. Importantly, the
edge servers are restricted to witness generation alone, with
no involvement in managing the accumulator or its elements.
This division of responsibilities enhances both scalability
and security, as no single edge server can independently
produce a valid witness.

The final verification of membership or non-membership
is conducted by the client (e.g., a web browser), which uses
the generated witnesses to validate the inclusion or exclu-
sion of a specified element. By segregating tasks between
the CA and the edge servers, our architecture achieves a
balance between trust centralization and secure distributed
collaboration.

3. System

In this section, we present the architecture and com-
ponents of our proposed revocation system, AcCuRevoke,
which leverages cryptographic accumulators to enhance the
security and efficiency of certificate revocation in TLS/PKI
environments. Our system is composed of three primary
entities: the First Party (i.e., Certificate Authority), Third
Farties (e.g., Edge Compute Providers), and Clients (e.g.,
web browsers). We also introduce the nomenclature and
provide a detailed overview of the system’s mathematical
foundations.

3.1. System Components

An overview of the system architecture is depicted in
[Figure T] [Table 1] also summarizes the notation used in the
AccuRevoke model and security analysis.

The C'A generates the cryptographic accumulator and
secret-shares the secret key with the Edge Compute
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Figure 1. The overview of AccuRevoke: @ The CA uses threshold secret
sharing protocol to divide its secret key among ECPs, ensuring that no
single ECP can generate a witness alone. (§3.1.1); ® The CA generates
an accumulator of revoked certificates and distributes it to ECPs and
clients. This accumulator is updated by the CA and distributed to ECPs
and clients when a certificate is revoked. (§3.I.1); ® During the TLS
handshake (the TLS server is omitted in the figure for brevity), the client
requests a witness from an ECP to perform revocation checking. ECPs
collaboratively generate partial witnesses using their secret shares, combine
them to reconstruct a full witness, and return it to the client. Note that
this process does not require ECPs to communicate with the CA during
operation unlike traditional OCSP. (§3.1.2); @ Upon receiving the full
witness, the client validates it and completes the revocation check, allowing
the TLS handshake to conclude successfully. (§3:1.3)

TABLE 1. NOMENCLATURE

Symbol Description

CA Certificate Authority (First Party)

ECP; Edge Compute Provider ¢ (Third Parties)
« Accumulator’s secret key (trapdoor)
pka Public parameters of the accumulator

X Set of revoked certificate serial numbers
Ax Accumulator value for X

T Revoked certificate’s serial number

Y Non-revoked certificate’s serial number
G1,G2,Gr Groups used

e Non-degenerate bilinear map
g1,92,€e(g91,92)  Generators of G1, G2 and G respectively
¢ Number of edge compute providers (EC P;)

t Threshold for secret sharing

(a)s Share of the secret key held by EC'P;
Wy Membership Witness

(wy, uy) Non-membership witness

Providers (ECF;). The EC P;s collaboratively generate wit-
nesses for certificates, which they can store in cache for ef-
ficient retrieval. Clients request the witnesses from multiple
ECP;s to verify the validity of certificates.

3.1.1. First Party (Certificate Authority). The First Party,

typically a C'A, holds the authoritative responsibility for

issuing, managing, and revoking digital certificates within

the PKI ecosystem. The CA performs the following key

functions:

o Key Generation: The CA generates the secret key « and
public parameters pky .



e Accumulator Management: The CA initializes and up-
dates the cryptographic accumulator Ay representing the
set of revoked certificates using the secret key a.

e Secret Sharing: to enable distributed witness genera-
tion, the CA employs Threshold Secret Sharing (Shamir)
scheme to distribute shares of the accumulator’s secret key
to multiple edge compute providers (EC'F;). This ensures
that no single ECP; possesses the entire secret, thereby
enhancing the system’s resilience against compromises.

o Accumulator Dissemination: The CA periodically pub-
lishes the current state of the accumulator to all registered
EC Ps and clients, ensuring that revocation information is
up-to-date and accessible. Note that the accumulator size
is very small, such as 21 bytes [27].

3.1.2. Third Parties (Edge Compute Providers). Edge

Compute Providers (ECP;) are computational entities re-

sponsible for generating and distributing witnesses. Their

responsibilities include:

« Partial Witness Generation: Each EC P; computes share
as (wg); or ((wy);, uy) for a certificate using their secret
share («);.

o Collaborative Witness Construction: The ECP; collabo-
ratively combine their shares of a witness to reconstruct
full witness wy;, or (wy, u, ) for a certificate in a distributed
setting. If a single £CP; has ¢ number of shares from
other EC'P;s, it can reconstruct the full witness providing
resiliency and robustness. This process can be performed
in advance for multiple certificates, and the resulting
witnesses can be stored in cache for efficient retrieval.

o Witness Distribution: Upon receiving a request from a
client, an EC'P; retrieves the full witness w,, or (wy, uy)
from cache and sends it to the client.

3.1.3. Client (e.g., Web Browser). A client, typically a web

browser, interacts with the revocation system to verify the

validity of certificates during TLS handshakes. The client’s
responsibilities include:

« Witness Request: A client sends a request for the witness
of a certificate with serial number x or y to an ECP;. If
the requested ECP; is out of service, the client can look
for another ECP;.

« Witness Verification: A client verifies the received recon-
structed (by ECP;) witness w; or (wy, u,) using public
parameters. Optionally, the client may request witnesses
from multiple ECP; for redundancy but is not required
to manage the collaboration process.

3.2. Threat Model

The security of the AccuRevoke system is paramount,
given its role in maintaining the integrity of TLS/PKI com-
munications. We adopt the Dolev-Yao adversary model [17]
to analyze potential threats, where the adversary has full
control over the communication channels and can attempt
to compromise system components. The primary threats
considered are as follows:

3.2.1. Compromised Third Parties (Edge Compute
Providers). An adversary may compromise one or more
ECP;, gaining access to their shares («); of the accumu-
lator’s secret key. If sufficient ECP; are compromised, the
adversary might attempt to generate fraudulent witnesses.
We mitigate this by (1) employing Shamir’s Secret Sharing
with a threshold ¢, our system ensures that no single EC'P;
possesses the entire secret key. A threshold number of EC'P;
must collaborate to generate a valid witness, making it
significantly harder for an adversary to compromise the
system by targeting individual ECP;. The system’s re-
silience parameter ¢ can be also tuned to require a minimum
number of ECP; to generate witnesses. This allows system
administrators to balance between performance and security
based on the threat landscape.

3.2.2. Integrity of the Accumulator Value. We assume
that clients can securely obtain the latest accumulator value
Ay from the CA. This can be achieved by leveraging ex-
isting infrastructures such as Certificate Transparency Logs
(CTLogs) [7]], which provide an append-only, publicly au-
ditable log of certificates and associated data. The accumu-
lator value can be published in these logs or distributed via
secure channels.

Since the accumulator value is relatively small (e.g., a
couple of bytes), it can be efficiently distributed and stored
by clients. By ensuring the integrity and authenticity of Ay,
clients can trust that the verification process is based on the
correct and up-to-date state of the revocation information.
Clients can verify the authenticity of the accumulator value
using digital signatures from the CA or by cross-referencing
with trusted public logs.

This assumption allows us to focus on the security of
the witness generation and verification processes without
needing to consider attacks that tamper with the accumulator
value during transmission. By leveraging trusted mecha-
nisms for obtaining A », we mitigate the risk of accumulator
value compromises.

Also, it is computationally infeasible for an adversary to
compute the value of the accumulator without the knowledge
of the secret key « even if it knows the set of elements
accumulated X and the current accumulator value Ay.

4. AccuRevoke: Protocols and Implementa-
tion

In this section, we introduce the security goals of Ac-
cuRevoke and the detailed workings of AccuRevoke by
focusing on the interactions and responsibilities of the three
main entities and explain the mathematical foundations that
enable secure and efficient revocation[]

4.1. Security Goals

The primary security goals of AcCuRevoke are:

1. For formal proof of AccuRevoke, please refer to the



Algorithm 3 CA Key Generation and Setup

Algorithm 4 Accumulator Evaluation

Input: Security parameter x, size of the domain of
elements ¢, threshold ¢, total number of EC Ps /.
Output: Public parameters pky, secret shares {{«);}.

1: Generate bilinear pairing parameters BG as BG =
(p,G1,G2,Gr,e,g1,92) using security parameter k
and size of the domain of elements q.

Choose a secret key « & Ly,

Compute h + g5

Set public parameters pky = (BG, h).

Use Shamir’s Secret Sharing to divide « into shares
{{a);} with threshold t.

6: Securely distribute («); to each ECP;.

o Authenticity and Integrity, which ensure that clients
receive authentic and untampered revocation information,
preventing attackers from misleading clients about the
revocation status of certificates.

« Confidentiality of Secret Keys, which protects the ac-
cumulator’s secret key « and its shares (o), from unau-
thorized access, ensuring that only authorized entities can
generate valid witnesses.

« Robustness against Compromised Entities, which main-
tians security even if some ECPs are compromised, pre-
venting attackers from generating fraudulent witnesses or
disrupting the system.

« Availability, which ensures that clients can reliably obtain
revocation information and verify certificates, even in the
presence of network failures or malicious entities.

4.2. Overview of the AccuRevoke Protocol

AccuRevoke leverages bilinear pairing based dynamic
universal (threshold) secret-shared distributed cryptographic
accumulator to provide a scalable and secure certificate
revocation mechanism. We can consider various types of
cryptographic accumulators, such as RSA accumulators and
Merkle Tree accumulators. However, we chose to utilize an
elliptic curve accumulator due to its efficiency and smaller
proof sizes. Elliptic curve accumulators offer shorter ele-
ment representations and faster computation times compared
to other types, which is essential for handling large-scale
revocation lists in practical deployments.

The protocol consists of the following key phases:

1) Setup and Initialization: The CA generates crypto-
graphic parameters, including a secret key and public
parameters for the accumulator. The secret key is di-
vided and securely distributed to multiple ECPs using
a threshold secret sharing scheme.

2) Accumulator Management: The CA maintains an ac-
cumulator that represents the set of revoked certificates.
The CA might construct the accumulator using non-
revoked certificates, but having revoked certificates is
more advantageous because the number of revoked
certificates is significantly smaller than the total number

Input: Secret Key «, list of revoked serial numbers X,

public parameters pky .

Output: Accumulator A .
1: parse the public

(p7 G17 GQa GT} €, 91,92, h’)
2: for each serial number z € X do
3: Ay + Ag\f+a)

4: Disseminate Ay to all ECP; and clients.

parameters pka as

of issued certificates [26]]. Accumulating only revoked
certificates reduces the frequency of accumulator up-
dates and minimizes witness updates, as revocations
occur less often than new certificate issuances.
Certificates rarely transition from revoked to non-
revoked status, and the performance impact of such
updates is minimal [32]. Furthermore, certificates au-
tomatically expire at the end of their validity period,
rendering them invalid without requiring explicit revo-
cation or removal from the accumulator. This further
reduces the need for updates when certificates expire,
improving efficiency.

By minimizing updates to the accumulator, witnesses
remain valid for longer durations, enhancing caching
efficiency for ECPs and clients. When a certificate is re-
voked, the CA updates the accumulator and distributes
the updated version to ECPs and clients. However, new
certificate issuances do not affect the accumulator, as
it is based solely on revoked certificates.

3) Witness Generation and Distribution: ECPs collab-
oratively compute witnesses for certificates using their
secret shares. They precompute and cache these wit-
nesses to serve client requests efficiently.

4) Client Verification: Clients request witnesses from
ECPs when verifying a certificate during a TLS hand-
shake. Upon receiving a witness, the client verifies its
validity using the public parameters and the accumula-
tor.

4.3. First Party (i.e., CA) Operations

The CA plays a central role in (1) initializing the system
and (2) managing the accumulator. Note that the CA is not
involved with the generation of witnesses.

4.3.1. Key Generation. To initialize the system, the CA
generates the cryptographic keys and parameters required
for the accumulator. In Algorithm [3] the CA generates
cryptographic parameters necessary for the accumulator’s
operation. By using bilinear pairings [8], the system bene-
fits from efficient verification and security properties. The
secret key « is critical for accumulator updates and witness
generation; by employing threshold secret sharing scheme,
the system ensures that no single ECP can reconstruct c,
enhancing security against compromise. The CA is also
tasked with defining the appropriate threshold t value.



Algorithm 5 Accumulator Update

Input: Current accumulator Ay, certificate serial num-
ber x, operation op € {add, delete}.
Output: Updated accumulator A y-.
if op = add then
AXI — Ag+a).
Update X' < X U {x}.

else if op = delete tlhen

Agr  AGT
Update X’ + X'\ {z}.

Disseminate Ay to all EC'P; and clients.

AN AR s

4.3.2. Accumulator Initialization. The CA evaluates the
accumulator Ay representing the set of revoked certificates
X. Algorithm ] details how the accumulator is evaluated
initially with the set of revoked serial numbers.

4.3.3. Accumulator Update. The CA maintains the accu-
mulator Ay representing the set of revoked certificates X
The accumulator is updated whenever a certificate is revoked
or a revoked certificates changes to non-revoked, using
operations that depend on the secret key a. Algorithm [3]
details how the accumulator is updated; when a certificate
is revoked, the accumulator is exponentiated by the element
(z 4+ «), effectively incorporating the new certificate. For
the transition of a certificate’s status from revoked to non-
revoked, the accumulator is exponentiated by the multiplica-
tive inverse (x4 a)~! of the element (x4 «), removing the
certificate from the accumulator.

4.4. Third Parties (ECPs) Operations

The ECPs are responsible for collaboratively generating
witnesses and efficiently serving them to clients.

4.4.1. Partial Membership Witness Computation. Each
ECP; computes partial membership witnesses using their
secret share («); without requiring knowledge of the entire
set of the revoked certificates X or the secret key «. In
Algorithm[6] each ECP computes a partial witness by raising
the accumulator to the exponent r where 7 is the evaluation
of the lagrange polynomial g(z) at 0. To compute the

Algorithm 6 FEC P Partial Membership Witness Computa-
tion
Input: Secret share («a);, accumulator Ay, revoked
certificate’s serial number x.
Output: Partial membership witness (wy);.
1: Compute share of the mulitplicative inverse (z + o)1
as (s); < InvSharesElement({a);, x)
2: Compute polynomial g(x) —
Lagrangelnterpolation (4, (s);)
3. Evaluate the Lagrange polynomial at 0 as r + g(0)
4: Compute share of the membership witness (w,); <— A%
5: return (w;);

Algorithm 7 ECP Partial Non-membership Witness Com-
putation

Input: Secret share («);, accumulator A x, non-revoked
certificate’s serial number y, public key pkp, set of
accumulated revoked serial numbers &X'
Output: Partial non-membership witness ((wy);, uy).

1: parse the public parameters pkn as (BG,h) =
((p7 G17 GQ) GT7 €, 91, 92)7 h)

2: Compute share of the mulitplicative inverse of (y+a)~*
as (s); < InvSharesElement(({a);,y)

3: Compute uy < — [ cr(z —y)

4: Compute wit, <+ g;* - Ax

5: Compute polynomial g(z) —
Lagrangelnterpolation (i, (s);)

6: Evaluate the Lagrange polynomial g(x) at 0 as r < g(0)

7: Compute (wy); < wity

8: return ({wy);, uy)

lagrange polynomial g(x) per Shamir secret share, ECP;
only needs its share of the multiplicative inverse of (z + «)
which is (s); and identity i. The computation is secure
because {«); is only a share of the secret key, and individual
ECPs cannot reconstruct « alone. This approach contrasts
with traditional accumulators where witness generation of-
ten requires central coordination or full knowledge of the
accumulator set [[10]].

4.4.2. Partial Non-membership Witness Computation.

Like partial membership witness generation, each ECP;
computes partial non-membership witnesses using their se-
cret share («); without requiring knowledge of the secret
key a. In Algorithm [/| each ECP computes a partial non-
membership witness which constitutes two parts. The first
part (w,); is computed using the quite similar approach like
partial membership witness generation except with depene-
dency on wu,. The second part u, is a public value and
doesn’t depend on the secret share (a); of the ECP;.

4.4.3. Collaborative Witness Construction.

ECPs combine their partial witnesses to construct the
full witness for each certificate using simple multiplication.
Algorithm [§| outlines how ECPs reconstruct the full witness.

Algorithm 8 ECP Collaborative Witness Construction

Input: Partial membership witnesses {{w,);} or non-
membership witnesses { (wy);, u, } from at least ¢ ECPs.
Output: Full membership witness w, or non-
membership witness (wy, uy ).
Randomly pick at least ¢ number of shares of member-
ship or non-membership witnesses.
if x € X' then

Wy H§=1<wx>i
else

wy = [Tizi (wy)i
Store w,, or (wy,u,) in cache for efficient retrieval.

—_
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Algorithm 9 Client Non-Membership Witness Verification

Algorithm 10 Client Membership Witness Verification

Input: Public parameters pk,, accumulator Ay, non-
revoked certificate’s serial number y, non-membership
witness (wy, uy ).
Output: Verification result (Valid or Invalid).

1: parse the public parameters pkn as (BG,h) =
((pa G17 G27 GT7 6, 91792)7 h)

2 if e(Ax - g,",92) = e(wy, gy - h) then
3: Return Valid

4: else

5 Return Invalid

Input: Public parameters pk,, accumulator Ay, re-
voked certificate’s serial number x, membership witness
Wy

Output: Verification result (Valid or Invalid).

parse the public parameters pky as (BG,h) =
((p7 G17 GQa GT7 €, 91, 92)7 h)

2: if e(Ax, g2) = e(wy, g5 - h) then
3: Return Valid

4: else
5 Return Invalid

—_

This distributed approach to witness generation is more
scalable and secure compared to traditional methods that
rely on a single authority. No single ECP can infer anything
about the shares of the witness of the other ECPs from the
partial witnesses due to the discrete logarithm problem. [6]

4.4.4. Witness Distribution. Upon receiving a request from
a client, an ECP retrieves the full witness from cache and
sends it to the client rapidly, leveraging their CDN infras-
tructure. By precomputing and caching witnesses, ECPs can
respond to client requests with minimal latency. This is
particularly effective because ECPs, functioning as CDNs,
are geographically distributed and close to clients, ensuring
fast and efficient delivery of witnesses.

4.5. Client Operations

Clients verify the revocation status of certificates during
TLS handshakes by obtaining and validating witnesses.

4.5.1. Witness Request and Retrieval. Clients send re-
quests for witnesses to ECPs without needing to be aware
of the underlying collaboration or threshold parameters.

The client simplifies its interaction by requesting the
witness from a single ECP. The complexity of witness gen-
eration and ECP collaboration is abstracted away, enhancing
usability and efficiency on the client side.

4.5.2. Witness Verification. The client verifies the validity
of the received witness using public parameters and the
bilinear pairing.

Algorithm [I0] and [9] presents the verification process;
the client checks the equality of two pairing computations
using the public parameters and the received witness. If the
equation holds, it confirms that the witness for membership
(i.e., revoked status) or non-membership (i.e., non-revoked
status) corresponds to the certificate, and that both the
accumulator value and the witness are correct.

This verification step allows the client to independently
validate the legitimacy of the witness, even though it was
received from a third party (ECP/CDN). If the validation
fails, it indicates that either the accumulator value or the
witness is incorrect or has been tampered with. This capa-
bility enhances the auditability of the system, as clients do
not need to fully trust the third party serving the witness;
they can verify its correctness themselves.

5. AccuRevoke: Implementation and Evalua-
tion

We implement AccuRevoke in C++, utilizing several
external libraries to handle cryptographic operations, net-
work communication, and performance optimizations; the
core implementation of AccuRevoke consists of approx-
imately 3,000 lines of C++ code. For modular arithmetic
and cryptographic computations, we used (1) Shoup’s NTL
library v11.5.1 [34] for our cryptographic accumulator and
multiparty computation operations, (2) Pairing-Based Cryp-
tography (PBC) library [36] to support elliptic curve cryp-
tography and pairing-based operations, and (3) the ZeroMQ
library [2] for socket programming to facilitate communi-
cation between the CA, client and EC Ps.

In the following experiments, we evaluate the perfor-
mance of AccuRevoke from multiple perspectives, examin-
ing the role of each entity. Our testing environment consists
of an Intel Xeon Platinum 8360Y CPU with 48 cores.

5.1. First-party: Accumulator Management

We first evaluate the time required for accumulator
construction and updates, as well as the scalability of these
operations with respect to the number of elements and the
utilization of parallel processing.

5.1.1. Accumulator Implementation. For AccuRevoke,
we choose parameters based on the pairing-friendly Barreto-
Naehrig (BN) curve which has an embdedding degree 12.
This high embdedding degree allows us to reach a security
level of 256 bits in extended field F,,?; this choice results
in an accumulator size of 21 bytes and witness sizes of
21 bytes (for membership proof) and 61 bytes (for non-
membership proof). These sizes remain constant regardless
of the number of accumulated elements, ensuring scalability
as the number of elements increases.

We first measure the CPU time required to construct the
accumulator as the number of revoked certificates increases,
scaling up to 10 million elements. It is worth noting that
Let’s Encrypt, one of the largest CAs in terms of certificate
issuance volume, reported approximately 800,000 revoked
certificates [41]]. We extend our evaluation up to 10 million
elements to rigorously assess the performance of our system
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Figure 2. Accumulator generation time on CPU with multiple cores and
different numbers of revoked certificates.

under larger workloads. We conduct tests across a range of
processor configurations, varying from 8 to 48 cores.

As shown in we find that the CPU time for
accumulator construction grows almost linearly with the
number of elements. However, by leveraging multicores on
the CPU, we achieve significant performance improvements;
for example, constructing an accumulator with 10 million
elements took less than 120 msec when utilizing 48 cores,
underscoring the effectiveness of parallel processing in this
context. Considering that the generation of the accumulator
is a one-time process, we believe this initial construction
time is acceptable for practical deployment.

5.1.2. Accumulator Updates. Now, we measure the time
required to add or delete a single certificate from the accu-
mulator; note that these operations occur only when a cer-
tificate is revoked or when a previously revoked certificate
is reinstated. Since we manage only revoked certificates in
the accumulator, the issuance of new certificates does not
require updates to the accumulator.

The accumulator can theoretically hold an extremely
large number of members (i.e., 205 duodecillions), which
is nearly closer to the total number of serial numbers used
in X.509 certificates (which are typically 160 bits, allowing
for 2160 unique serials) [9]. Therefore, the CA may even
choose not to remove expired revoked certificates from the
accumulator to minimize operational overhead. However,
there are cases where revoked certificates are determined
to be valid again due to misconfiguration or error [32]. In
such scenarios, it is necessary to delete members from the
accumulator. Thus, we measure the performance overhead
of both adding and deleting certificates in the accumulator.

From experiments, we find that the time to add or delete
a single certificate remains constant regardless of the accu-
mulator size; both addition and deletion operations take ap-
proximately 0.47 milliseconds on average. This consistency
is due to the design of AccuRevoke, where updates involve
fixed-size exponentiation operations that are independent of
the total number of accumulated elements as outlined in line
2 and 5 of Algorithm [3
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Figure 3. Non-membership witness generation time on CPU with multiple
cores and different numbers of revoked certificates.

5.2. Third-party: Witness Generation and Recon-
struction

We now evaluate the performance of witness genera-
tion for both membership (revoked certificates) and non-
membership (non-revoked certificates) proofs. Note that this
process is done by EC Ps.

5.2.1. Witness for membership. When generating a single
membership witness, we find that the CPU time remains
constant at approximately 0.46 milliseconds using a single
core with 1 million revoked certificates. Moreover, this time
remains constant regardless of the number of revoked cer-
tificates. This is because generating a membership witness
in our accumulator scheme involves computations that are
independent of the size of the accumulated set (as noted
in line 1 — 4 in Algorithm [6)); specifically, the process
requires exponentiating the accumulator with the multiplica-
tive inverse of an element related to the individual revoked
certificate, rather than iterating over the entire set of revoked
certificates.

This indicates that EC'Ps do not need to pre-generate
membership witnesses for revoked certificates and can effi-
ciently handle witness generation on the fly. The constant-
time performance ensures scalability and responsiveness,
making real-time witness generation practical even as the
number of revoked certificates grows.

5.2.2. Witness for non-membership. In contrast, non-
membership witness generation may face performance chal-
lenges because the accumulator must iterate over all its
members to generate the proof, as outlined in line 3 of
Algorithm

presents the results of our experiments. We
observe significantly slower performance compared to mem-
bership witness generation. For example, using 8 cores,
the time required to generate a non-membership witness
is approximately 70 times slower (0.46 vs. 31 msec) than
generating a membership witness with an accumulator con-
taining 1 million revoked certificates.

However, the performance improves as we utilize more
CPU cores. By employing 48 cores, we find that the gener-
ation time decreases to 16 milliseconds, effectively making
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Figure 4. Witness reconstruction time with the different numbers of secret
shares (t).

it over two times faster than with 8 cores; this improvement
demonstrates that parallelism can effectively reduce the
computation time for non-membership witness generation,
especially as the number of revoked certificates increases.
Despite these improvements, the CPU time for non-
membership witness generation is relatively higher than the
typical time required to generate an OCSP response, which
takes around 1 millisecond in our testbed. This disparity
indicates that further optimization is necessary to make
non-membership witness generation practical for real-world
applications. We will discuss techniques to improve the gen-
eration time of non-membership proofs in the next section.

5.2.3. Witness reconstruction. After generating the partial
witnesses from multiple ECPs, the ECPs initially con-
tacted by the client is responsible for collecting these partial
witnesses to construct the full witness; this operation must
be efficient to avoid introducing performance overhead when
returning the witness to the client.

We analyze the effect of varying the threshold param-
eter ¢ in Shamir’s Secret Sharing on the performance of
witness reconstruction. Note that the full witness can be
reconstructed by the client or by an ECP that aggregates
the partial witnesses.

shows the witness reconstruction time as the
threshold ¢ increases. As outlined in Algorithm [§] the wit-
ness reconstruction depends only on the threshold ¢ and is
independent of the number of elements in the accumulator.

The results indicate a linear increase in reconstruction
time with higher thresholds due to the additional computa-
tions required for mulitiplication of G;’s element; however,
even with higher thresholds, the CPU reconstruction time
remains within 0.02 milliseconds. Thus, we believe the
overhead for reconstruction remains within acceptable limits
for practical applications.

5.3. Client: Witness Validation

The client can validate the full witness using the accu-
mulator fetched from the CA. As shown in Algorithm
and [0] the validation time is independent of the number of
elements in the accumulator because the verification process

involves two bilinear pairing operation. Specifically, the
validation requires a constant number of exponentiation and
pairing operations that do not depend on the size of the
accumulated set or the number of EC Ps.

Our measurements indicate that the validation time is ap-
proximately 24 milliseconds; this performance is acceptable
for practical applications, as it introduces minimal overhead
on the client side.

6. Overcoming the Non-membership Witness
Generation Bottleneck

While AccuRevoke performs efficiently in accumula-
tor management and membership witness generation, gen-
erating non-membership witnesses for revoked certificates
can present a performance bottleneck when the number
of revoked certificates surges due to a security incident
that requires massive revocation, such as the Heartbleed
vulnerability [24] or a CAA bug [14].

One possible solution is to use double accumulators,
maintaining two accumulators: one for revoked certificates
and another for non-revoked certificates. This allows EC Ps
to generate faster membership proofs for non-revoked cer-
tificates instead of slower non-membership proofs for re-
voked ones. However, this approach may introduce sub-
stantial overhead; the CA must frequently update the non-
revoked certificates accumulator whenever new certificates
are issued, disseminate updated accumulator values to
clients and EC Ps, and provide updated membership wit-
nesses. This continuous updating is impractical and not
scalable.

Alternatively, maintaining a single accumulator for re-
voked certificates and optimizing non-membership witness
generation is more feasible. Our experiments
suggest a potential performance improvements in non-
membership witness generation through increased paral-
lelism using multicore processors.

6.1. GPU Acceleration

Modern edge computing providers, such as Cloudflare,
now offer GPU acceleration services [15]], which we can
leverage to enhance the performance of our system.

6.1.1. Insights. In our implementation, AccuRevoke em-
ploys elliptic curve-based accumulators. The primary com-
putational bottleneck in generating non-membership wit-
nesses is computing the product [ [, . (2 —y), as specified
in line 4 of Algorithm[7} This operation has a time complex-
ity of O(|X|), where X represents the set of accumulated
revoked certificates. To enhance performance, we leverage
parallelism in calculating this product; each term in the
product is independent, allowing distribution across multiple
processing units

2. Notably, such parallelization is challenging with RSA accumulators
for non-membership witness generation. RSA accumulators require com-
puting Bézout coefficients using the Extended Euclidean Algorithm [29]], an
inherently sequential process that limits opportunities for parallel execution.
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Figure 5. Non-Membership witness generation time (single vs. 1K Bulk)
on GPUs with different numbers of revoked certificates.

We utilize the CUDA-based CGBN (C Arbitrary Pre-
cision Integer Library for GPUs) [35] from NVIDIA Labs
to handle modular operations on large numbers, employing
NVIDIA A100 GPUs for computation. Our implementation
addresses the challenges associated with adapting crypto-
graphic algorithms to GPU architectures, such as managing
memory hierarchies and optimizing parallel workloads. The
result is a performant system capable of handling large-scale
cryptographic computations efficiently; we plan to open-
source our implementation to support further research and
development in this area. Our implementation consists of
around 900 lines of C++ code.

6.1.2. Non-Membership Witness Generation on GPU.
Now we evaluate the performance of witness generation for
non-membership on GPU. shows the average time
required to generate a non-membership witness. Initially, the
performance gains appear modest; for example, generating
a non-membership proof with 1 million revoked certificates
takes 15 milliseconds on the GPU, compared to 16 mil-
liseconds using 48 CPU cores. This limited improvement
is primarily due to the overhead of memory copying over
the PCI Express (PCle) bus to the GPU, which constitutes
the majority of the processing time. Excluding the memory
copy cost, the GPU computation achieves 8.5 milliseconds,
highlighting the potential for significant speedup.

To mitigate the memory transfer overhead, we batch
the processing of non-revoked certificates. By copying and
processing batches of 1,000 certificates at once, we amortize
the memory copy cost over multiple computations. This
approach reduces the average time per non-membership
proof to 1.8 milliseconds, achieving an 8.9-fold speedup
compared to CPU-based processing. We believe that EC Ps
can effectively utilize GPUs to enhance performance in this
manner.

7. Security Analysis

In this section, we discuss how AccuRevoke mitigates
potential attacks across various scenarios.

Attack 1: Fooling Clients into Accepting Revoked Cer-
tificates. An attacker may attempt to trick clients into

accepting a revoked certificate as valid by providing a
fraudulent witness. In AccuRevoke, generating a valid
non-membership witness (w,,u,) for a revoked certificate
r € X (ie., = is a member of the accumulator) requires
knowledge of the secret key «. Since « is securely shared
among EC Ps using Shamir’s Secret Sharing with threshold
t, and no single ECP possesses enough shares to recon-
struct «, an attacker cannot generate a valid witness without
compromising at least ¢ ECPs.

Furthermore, the accumulator value Ay is signed by the
CA and disseminated to clients and ECPs. Clients verify
the authenticity of Ay using the CA’s signature, ensuring
that they use the correct accumulator. Any attempt to provide
a tampered or fake accumulator would fail the signature
verification, and subsequent witness verification would fail.

Attack 2: Generating Membership Witnesses for Non-
Member Certificates. Conversely, an attacker may try
to generate a membership witness for a certificate that was
never issued or has not been revoked (i.e., x ¢ X). Without
knowledge of «a, or access to sufficient secret shares, it is
computationally infeasible to generate a valid witness for
such a certificate due to the hardness of the underlying
cryptographic assumptions (e.g., the Strong Diffie-Hellman
assumption). Even if the attacker has the oracle access to
all the algorithms, it’s infeasible for the attacker due to the
collision freeness of the accumulator.

Attack 3: Compromised Edge Compute Providers. If
one or more F'C'Ps are compromised, the attacker gains ac-
cess to their secret shares («);. However, unless the attacker
compromises at least ¢ £C'Ps, they cannot reconstruct o or
generate valid witnesses independently. Our use of threshold
secret sharing ensures that the system remains secure as long
as fewer than ¢t EC'Ps are compromised.

In the event that compromised EC Ps provide incorrect
partial witnesses, clients will fail to reconstruct a valid full
witness, and the verification will fail. Clients can request
partial witnesses from multiple £C'Ps and use redundancy
to ensure that they can obtain enough correct shares to
reconstruct the witness.

The client-side verification process is inherently robust
again collusion among t or more EC Ps. Since verification
depends on the trusted accumulator Ay from CA and the
specific serial numbers of either revoked (x) or non-revoked
(y) certificates, any atttempt to generate a fraudulent witness
would result in a verification failure. This ensures that
fabricated witnesses are easily detectable.

Attack 4: Denial of Service. An attacker may at-
tempt to disrupt the availability of the system by preventing
clients from obtaining witnesses or the accumulator. To
mitigate this, AccuRevoke leverages the distributed nature
of ECPs, which are geographically dispersed and can
serve clients from multiple locations. Clients can request
witnesses from multiple £ CPs, increasing the likelihood
of obtaining the necessary information even in the presence
of network disruptions or targeted attacks.
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Figure 6. Cumulative data downloaded by clients using different revocation
strategies.

8. Comparison with Other Approaches

Table [2| summarizes the comparison between AccuRe-
voke and three existing revocation dissemination schemes:
CRLs, CRLite, and OCSP.

Bandwidth Consumption.  Existing approaches to revo-
cation incur significant data overheads. CRLs require down-
loading entire lists of revoked certificates—roughly 173
KB each [41]—and must be refreshed periodically. CRLite
lowers this overhead by distributing compact filters, yet it
still demands around 580 KB of daily delta updates [28].
OCSP responses are smaller (about 1.3 KB) [11], [28]], but
each certificate validation triggers a dedicated query. In con-
trast, AccuRevoke drastically reduces bandwidth by using
fixed-size proofs (approximately 21 bytes for membership
and 61 bytes for non-membership), independent of the total
number of revoked certificates.

To evaluate real-world performance, we simulate a user
visiting 1,000 HTTPS domains according to a Zipf distri-
bution (exponent =1.26) favoring popular sites following a
similar setup in [28]. We ran 100 such simulations, each
contacting around 650 unique domains on average, and
computed the mean results. We compared four revocation
strategies:

e CRL Only: The browser downloads entire CRLs from
certificate authorities and caches them until expiration.

e OCSP and CRL: The browser uses OCSP by default,
reverting to CRLs only if OCSP is unavailable.

o CRLite: The browser maintains a local “filter cas-
cade” [28] with daily incremental updates, checking lo-
cally for revocations.

o AccuRevoke: The browser holds the latest accumulator
value from the CA, and each domain supplies a short
membership or non-membership proof.

Figure 6|shows the cumulative data downloaded as users
visit up to 1,000 domains. Among these four strategies,
CRL Only yields the highest bandwidth usage—reaching
over 10 MB on average—due to frequent, large CRL down-
loads. OCSP and CRL uses smaller OCSP responses (1.3
KB) but still suffers from high overhead (a 10% fallback to
full CRLs). Although CRLite avoids per-domain growth by
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Figure 7. Cumulative delay experienced by clients using different revoca-
tion strategies.

leveraging a locally stored filter, AcCuRevoke is ultimately
even more efficient, keeping total downloads under 0.1 MB
for 1,000 domains through its compact proofs.

Latency. Figure [/| highlights the cumulative delay in
the same simulation. Following the modeling parameters of
CRLite [28]], we assume OCSP checks take 50-100 ms and
CRLs 50—4,000 ms to download, reflecting real-world net-
work variability. For CRLite, local lookups typically incur
10 ms if the certificate chain requires a filter-cascade check
and 6 ms if it is already in the LRU cache [28]].

In keeping with the bandwidth trends, CRL Only again
demonstrates the largest latency—at times approaching
1,000s—due to the long-tail delays of downloading large
CRLs. OCSP and CRL performs better overall, but fallback
instances and the cumulative effect of many OCSP queries
still add up. CRLite exhibits very low latency because checks
are largely local once the filter is updated. Similarly, Ac-
cuRevoke requires a short proof validation per domain visit;
although this introduces a small per-domain overhead, the
proof size is minimal (tens of bytes), allowing AccuRevoke
to surpass the latency performance of OCSP and CRL.

In practice, AccuRevoke offers CRLite-like data effi-
ciency without forcing daily downloads of a large global
filter. Unless a user visits tens of thousands of domains in
a single day, AccuRevoke’s smaller per-domain overhead
remains highly attractive in typical browsing scenarios.

Privacy. CRLs and CRLite offer full privacy since
clients check revocation status locally. OCSP poses privacy
concerns because clients query the CA’s OCSP respon-
der, exposing their visited websites. Although CDNs may
somewhat obscure client queries, they do not fully address
privacy issues. AccuRevoke can enhance privacy by allow-
ing clients to obtain proofs from ECPs and, due to the
small proof sizes, potentially leverage alternative channels
like DNS to mask client queries. However, leveraging such
methods is beyond the scope of this paper.

Reliability. = CRLs and CRLite function even if the origin
server is unavailable, as clients can use cached revocation
data. OCSP depends on the CA’s origin server; if it is down
and the CDN lacks fresh data, clients cannot obtain revo-
cation status. AccuRevoke improves reliability by enabling



TABLE 2. COMPARISON OF REVOCATION DISSEMINATION SCHEMES. WE INDICATE PRIVACY WITH A

WHERE SCHEMES RELY ON OCSP STAPLING

(RATHER THAN VANILLA OCSP). IN ACCUREVOKE, THE CA ITSELF CANNOT TRACK QUERIES, BUT THE EC' P MAY INFER WHICH CERTIFICATE IS

BEING CHECKED BASED ON THE REQUEST. CRLITE’S AUDITING CAN BECOME CUMBERSOME IF CLIENTS (SUCH AS MOZILLA) BUILD THEIR OWN

FILTERS WITHOUT AGGREGATING CERTIFICATES FROM ALL CAS. SIMILARLY, FOR OCSP, AUDITING MAY BE COMPLICATED WHEN A CDN USES A
DELEGATED CERTIFICATE TO SIGN RESPONSES.

Scheme Revocations Pull Bandwidth For 1K Websites Privacy Works with | Authenticity Failure
‘ Covered Model ‘ Cost Bytes Downloaded \ Delay ‘ Dead Origin Auditable ‘ Model ‘

CRL All X 173 KB per CRL [41] 31.7MB 378.7 sec [] [] [] Hard-fail

CRLite All X 580 KB per day [28] 0.58 MB 6.4 sec [ J [ ] [ ] Hard-fail

OCSP All [ J 1.3 KB per request [11], [28] 1.30 MB 74.8 sec X Soft-fail

AccuRevoke All [ ] 21 or 61 B per request 0.06 MB 86.9 sec [} [} Soft-fail

ECPs to generate proofs independently of the CA’s origin
server, ensuring clients can still perform revocation checks
even when the origin is unreachable.

Failure Model.  The failure model refers to the system’s
behavior when revocation information is unavailable. CRLs
and CRLite use a hard-fail model: if the client cannot obtain
revocation data, it treats the certificate as invalid, enhancing
security but potentially affecting availability. OCSP employs
a soft-fail model, where the client may proceed without
revocation information, assuming the certificate is valid.
While this improves availability, it may expose clients to
risks if a revoked certificate is accepted. To address this
issue, extensions like OCSP Stapling and Must-Staple have
been introduced; however, the deployment rate of these ex-
tensions is low, mainly due to challenges in implementation
and mismanagement by server operators [[L1]]. AccuRevoke
mitigates the risks associated with the soft-fail model by
distributing revocation information across ECPs, reducing
the likelihood of unavailability and enhancing the reliability
of revocation checks.

Auditability. CRLs are auditable as clients can verify
the authenticity of revocation lists from the CA. CRLite
aims for auditability, but clients may not fully audit the
filter generation process; in practice, the filter generation
process is centralized, and clients may not have the means
to fully audit it. Specifically, Mozilla collects all revoca-
tion information to generate the CRLite filters, and clients
rely on these pre-generated filters without the ability to
independently verify the completeness or correctness of the
revocation data included. This reliance limits the clients’
ability to audit the revocation information fully. OCSP’s
auditability is limited, especially when CDNs use delegated
certificates [31[]; clients cannot detect fraudulent responses
if a CDN is compromised.

AccuRevoke maintains auditability by enabling clients
to verify the authenticity of revocation proofs using the ac-
cumulator and public parameters, ensuring trust even when
responses are served by third parties.

Deployability. AccuRevoke aligns with existing
TLS/PKI deployment practices, where CAs rely on third-
party CDNs (e.g., Akamai, Cloudflare) to distribute revo-
cation data [5]], [23], [33]]. However, AccuRevoke refines
ECPs’ role: they cryptographically collaborate to generate
proofs without holding full authority, reducing trust as-
sumptions while retaining performance benefits. This creates
compelling incentives for FC' P adoption:

o Synergy with Existing Infrastructure. ECPs’ globally
distributed Points of Presence (PoPs) minimize latency for
witness retrieval, aligning with their core CDN function-
ality. The threshold secret-sharing model (§3.1.1) allows
ECPs to reuse existing edge compute resources (e.g.,
GPUs for parallelized operations in[§6.1), avoiding costly
infrastructure overhauls.

« Risk Mitigation. The threshold model (§4.4.3) ensures
that no single ECP bears full responsibility for witness
generation. This distributes liability and reduces the rep-

utational risk of compromise, making participation safer
for EC Ps.

« Service Differentiation. By supporting privacy-preserving,
auditable revocation checks with minimal bandwidth over-
head, EC Ps position themselves as leaders in secure edge
computing. We believe this attracts security-conscious
CAs and enterprises, differentiating them from competi-
tors offering basic CDN services.

In practice, EC Ps already partner with numerous CAs; Ac-
cuRevoke effectively formalizes these relationships, allow-
ing them to provide authenticated revocation proofs without
gaining access to a CA’s private key. From a cost—benefit
perspective, the additional computation and memory over-
head is small relative to typical CDN workloads, while
the potential benefits—service differentiation, new revenue
channels, and enhanced trust—can be significant.

9. Conclusion

We introduced AccuRevoke, a novel scheme that en-
hances the certificate revocation process by ensuring the
authenticity and integrity of revocation information, even
when responses are generated by third parties without direct
CA communication. Leveraging distributed cryptographic
accumulators and threshold cryptography, AccuRevoke en-
ables ECPs to securely provide authenticated revocation
proofs.

AccuRevoke addresses key challenges in the revocation
ecosystem with a scalable and efficient solution. It reduces
proof sizes to 21 bytes for membership proofs and 61
bytes for non-membership proofs, significantly smaller than
current OCSP implementations. Our scheme generates an
accumulator containing 1M revoked certificates in 12 ms,
updates it in 0.47 ms, and generates witnesses in 0.46 ms
(membership) and 16 ms (non-membership). GPU accelera-



tion further optimizes non-membership witness generation,
reducing processing time to 8.5 ms.

Integrating AccuRevoke into existing infrastructure en-

hances the reliability, privacy, and efficiency of TLS re-
vocation checking. Compact proof sizes and distributed
computation reduce bandwidth consumption, mitigate single
points of failure, and preserve client privacy by decoupling
revocation checks from the CA.
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Appendix A.
Formal Definitions

In this section, we first present the security definitions
for Bilinear Dynamic Universal accumulator based on g —
SDH and later we prove the security of AccuRevoke.

Assumption 1 (¢-Strong Diffie-Hellman). Let G; and
G2 be two cyclic groups of prime order p, respectively
generated by g1 and g». In the bilinear group pair (G1, G2),
the ¢ — SDH problem is stated as follows:

Given as input a (¢ + 3)-tuple of elements
(91,907,971 91" 92,95) € GI™ x Ga, output a
pair (c, g/ ""9) € Zy x Gy for a freely chosen value
c€Zy\{-x}.

For ¢ > 0, we define the advantage of an adversary A
as

AdVZ:ASDH = Pr |:A(gla (gfl)ie[q]7g2vg§) = (C, g}/(l’“’C))

The g—SDH assumption holds if Advga‘?f M is a negligible
function for all PPT adversaries .A.

Definition 1 (Bilinear Dynamic Universal accumula-
tor based on ¢ — SDH). [18] A dynamic universal accu-
mulator is a tuple of PPT algorithms (KeyGen, Eval, Add,
Delete, MemWit, NonMemWit, VerMem, VerNonMem):
(v, pka) + KeyGen(17,q) : Given a security parameter ,
the maximum number of elements that can be accumulated
q, it computes BG = (pa Gl; GQ, GT} 6391792) USing q, R
and returns private key « and public parameters pky where
pka < (BG, ¢%).

Ax < Eval(a, pkp, X): Given the private key «, public

parameters pka and a set X that has to be accumulated, it

computes Ay g}_lmex(w+a)

Ax.

(Ax, X') + Add(a, Ay, z, X): Given the private key
«, an accumulator Ay, an element x € Z;; to be added,
set of accumulated elements X. If x € X, it return L
otherwise it computes Axs < Angra) and returns the
updated accumulator Ay and updated set X/ < X' U x.

(Ax+, X') < Delete(a, Ax, z, X): Given the private key
«, an accumulator Ay, an element x € Z;‘, to be deleted,
set of accumulated elements X. If x 7% X, it return L
otherwise it computes Ays <+ A()era) and returns the
updated accumulator A . and updated set X/ + X'\ x.

wy < MemWit(a, Ay, z): Given the private key a, an
accumulator value Ay, an element x for which membership
witness has to be generated where z € X, it computes w,,
A(l’+0¢)_1

x

and returns the accumulator

and returns the membership witness w,.

(wy, uy) <~ NonMemWit(c, pka, Ax, X, y) : Given the
private key «, the public parameters pk,, an accumulator
value Ay, the set of accumulated elements X, and an
element y ¢ X, it computes u, < —[[,cr (v —y) and

wy, < (Ax - gi")@T®) ™" and returns the non-membership
witness (wy, Uy ).

{0,1} « VerMem(pka, Ax,x,w,): Given the public
parameters pkp, the accumulator Ay, the membership el-

ement x, the membership witness w,, it returns 1 if
e(Ax, g2) = e(wy, g5 - g), otherwise return 0.

{0,1} < VerNonMem(pka, Ax, y, wy, u,): Given the
public parameters pkj,, the accumulator Ay, the non-
membership element y, the non-membership witness
(wy,uy), it returns 1 if e(Ax - g;%,92) = e(wy, g5 - g5)),
otherwise return 0.

This bilinear dynamic universal accumulator is correct
and sound under the g-strong Diffie-Hellman assumption
defined as follows:

Definition 2 (Correctness). An accumulator is correct if
there exists a negligible function €(+) in the security param-
eter x such that the following holds:

(ar, pkp) + KeyGen(17, q),
Pr |w, < MemWit(o, Ay, ) :
VerMem(pka, Ax,z,w,) =1 Az € X

>1—e(k),

and
(a, pkp) < KeyGen(17, q),

Pr | (wy, uy) < NonMemWit(a, pka, Ax,y, X) :
VerNonMem(pka, Ax,y, wy,uy) = 1Ay ¢ X

>1-

9]

Correctness implies that any element in/not in the accumu-
lator, a corresponding membership/non-membership witness
must prove the membership/non-membership witness suc-
cessfully.

Definition 3 (Collision Freeness). Let O =
{Eval(a, pkp, ), MemWit(a, -, -), NonMemWit(«, pka, -, +),
Add(a,-,-,-) and Delete(a, -,-,-)} be the oracles such that
«, pkp are hard-coded and adversary is allowed to choose
other parameters for the oracles (denoted as “-”). Let
A* + Eval(a, pka, X*), be the value of the accumulator
from the aforementioned oracle, where X™* is a set of
elements to be accumulated chosen by the adversary.
A cryptographic accumulator is collision-free, if for all
PPT adversaries A that have access to O, there exists a
negligible function €(-) such that:

(ar, pkp) + KeyGen(17,q),
Pr | (wg,x*, X*) « Ao(pk,\) :
VerMem (pkp, A, 2%, w,) = 1 Aa* ¢ X~

< e(k),

and

(a,pkp) < KeyGen(1", q),
Pr | (wy,uy, y*, X*) = A (pka) :
VerNonMem (pkp, A%, y*, wy, uy) = 1 Ay* € X*

Soundness (collision resistance) prevents a dishonest
party from generating a non-membership witness for a
member or membership witness for a non-member.

Security Model. We define the security of AcCuRevoke
using Ideal/Real paradigm, such that the adversary .4 should
not be able to make the witness verification unsuccessful
(correctness) when the witnesses created by the semi-honest
ECPs correctly in an honest majority settings. Also, an

< e(k),



adversary A statically corrupting ECPs can not create a
membership witness for a non-member and vice-versa (colli-
sion freeness). Let F be an ideal functionality that answers
all the queries honestly. Let S be an ideal simulator that
emulates the view of the real-world adversary. Let £ be the
environment that provides inputs for all entities and receives
the corresponding outputs. Also, £ can get any adversarial
views at any time. We define our Ideal world as below:
Ideal:

1) Gen: On receiving input (1%, ¢q), it runs (o, pky) <
KeyGen(1%,q) and sends (a, pkp) to the CA. F noti-
fies S about the event and F sends pkp to S.

2) Eval: On receiving input («, pka, X) and it evaluates
Ax + Eval(a,pka,X) and sends Ay to the CA. F
notifies S about the event and F sends Ay to S.

3) Add: On receiving input (a, Ay, z, X) and it updates
(Axr, X') + Add(a,Ax,z,X) and sends (Ax:,X’)
to the CA. F notifies S about the event and F sends
Ax to S.

4) Delete: On receiving input (o, Ay, z, X) and it updates
(Axr, X') < Delete(a, Ay, z, X) and sends A y- to the
CA. F notifies S about the event and F sends Ay to
S.

5) MemWit: On receiving =z, JF runs w, <
MemWit(a, Ay, z). F notifies S about Ay, X,
w, and z. If S can simulate the view of adversary, it
sends ok to F otherwise L. F sends w, as output to
the client if it receives ok from S.

6) NonMemWit: On receiving y, F runs (wy,u,)
NonMemWit(c, Ax,x). F notifies S about Ay,
(wy,uy), X and x. If S can simulate the view of
adversary, it sends ok to F otherwise L. F sends
(wy, uy) as output to the client if it receives ok from

Let EX ECr, 4.¢ denote the random variable describing
the output of environment £ when interacting with adversary
A and parties running protocol AccuRevoke-II.

Let EXECr s ¢ denote the random variable describing
the output of environment £ when interacting with simulator
S and ideal functionality F.

Definition 3 (AccuRevoke Security): We say that the
protocol II securely UC-emulates the ideal functionality F
if for every adversary A, there exists a simulator S such that
for all environments &, the distributions of EX ECr 4 .¢ and
EXECr s are indistinguishable. That is, on any input,
the probability that £ outputs 1 after interacting with A and
parties running II differs by at most a negligible amount
from the probability that £ outputs 1 after interacting with
S and F, formally:

|PI‘[EXECH’A75] — PI‘[EXEC]:_’&gH < (k)

Appendix B.
Security Proof

Theorem 1 (AccuRevoke security). AccuRevoke is

UC-secure by

Proof. We construct a simulator S such that no PPT en-
vironment £ can distinguish between its view in the Ideal
and Real. & can statically corrupt ¢t — 1 ECPs to view the
execution transcript. On receiving the notification from F,
the simulator S functions as follows:

Gen:
1) S generates random ¢—1 elements as (o, ..., Q1) &
Fp
2) S outputs (aq,...,q-1)

Eval, Add and Delete:

1) As these operations are performed by the trusted CA,
the simulator does not need to simulate the adversary
view for these commands.

MemWit:

1) S generates ¢t — 1 random inputs (aq,..., Q1) &
F, to execute the InvSharesElement protocol on each
input, obtaining corresponding outputs (s1,...,S;—1).

2) § computes lagrange polynomial g(x); = s; -

[Ti<j<t—1 ;iq;] for each of the generated outputs
fromjstzep 1.

3) S computes ¢(0); for each of the polynomials from
step 2.

4 8 outputs (g7, g7, ... g7 )

NonMemwit:

1) S generates ¢ — 1 random inputs (aq,...,a—1) &
F, to execute the InvSharesElement protocol on each
input, obtaining corresponding outputs (s1,...,S;—1).

2) § computes Lagrange polynomial g(x); = s; -
[Ti<j<t—1 % for each of the generated outputs

x

fromjstzap 1.

3) S computes ¢(0); for each of the polynomials from

step 2.

4) S outputs (gf(0)17gf(0)2,...,gf(o)t’l)

We now define a sequence of hybrid experiments.
We show that the Real and Ideal are indistinguishable.
All algorithms (KeyGen, Eval, Add, Delete, MemWit,
NonMemWit, VerMem, VerNonMem) are non-interactive.

Hybrid 0. It is a real-world protocol EXFECH s e
between an adversary A and environment £ presented in
Algorithms Without loss of generality, we assume
ECPy,...,ECP,_; are corrupted.

Hybrid 1. This game is the same as Hybrid O except
that we make the following changes. First, we introduce the
ideal functionality F to answer the £’s request honestly.
Second, in the Gen algorithm, the CA computes [ ran-
dom values, instead of using Shamir secret sharing. Third,
in step 1 of MemWit or NonMemWit the ECP executes
InvSharesElement protocol using dummy inputs rather than
the one provided by the environment.

We claim that Hybrid O and Hybrid 1 are indistin-
guishable. Specifically, due to the security of Shamir secret
sharing, shares generated in Gen algorithm in Hybrid 0
are indistinguishable from random elements generated in
Hybrid 1. Second, due to the security of InvSharesElement



protocol that makes use of Beaver’s trick to perform Shamir
share multiplication, the transcript being generated from
the dummy input in Hybrid 1 is indistinguishable from the
transcript generated from the actual input in Hybrid 0.
Note that Hybrid 1 is identical to the simulator S in
Ideal, which shows that Ideal and Real are indistinguishable
under the view of £ and completes the proof. O

Appendix C.
Meta-Review

The following meta-review was prepared by the program
committee for the 2025 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

C.1. Summary

This paper designs a system that addresses many is-
sues in certificate revocation. The presented system, called
AccuRevoke, uses cryptographic accumulators and Shamir
secret sharing to reduce the reliance on a single point of
failure for providing revocation information to clients.

The system requires participation by three distinct en-
tities: a CA, multiple edge compute providers (ECPs), and
clients. It works by the CA generating an initial accumulator
representing all the known revoked certificates. Any time a
new certificate is revoked, the CA can update the accumula-
tor. Whenever the accumulator is updated, the CA splits the
accumulator into secret shares and distributes them among
the ECPs. When a client wants to know if a certificate has
been revoked, they request the witness of the accumulator
from an ECP. The ECP then collects the locally generated
shares of the witness from k-of-n other ECPs, recombines
them and gets the actual witness that they return to the client.

C.2. Scientific Contributions

o Addresses a Long-Known Issue
e Provides a Valuable Step Forward in an Established
Field

C.3. Reasons for Acceptance

1) This paper addresses the long-known issues with cer-
tificate revocation on the internet. They provide a
scheme that significantly reduces bandwidth as com-
pared to Certificate Revocation Lists (CRL) and re-
duces latency compared to the Online Certificate Status
Protocol (OCSP).

2) This paper provides a valuable step forward in an estab-
lished field. They build on prior work by Helminger et
al. (2021) who designed the cryptographic mechanisms
for revoking certificates in the general case and applied
that scheme to the new domain of TLS certificate
revocation on the internet—including some of the com-
plexities of deployment and security concerns.

C.4. Noteworthy Concerns

A formal security treatment is provided in the appendix,
however, as it is not in the main body and was added during
shepherding, it has not been peer reviewed. As a result, the
guarantees remain to be fully analysed.



	Introduction
	Background
	Certificates
	TLS Certificate Revocation in Practice
	Certificate Revocation Lists (CRLs)
	Online Certificate Status Protocol (OCSP)
	CRLite

	Roles of CDNs in Dissemination of Revocation Status
	Secure Multiparty Computation
	Shamir Secret Sharing
	Computation of Share of Multiplicative Inverse

	Accumulator
	Dynamic Universal (threshold) Secret-shared Distributed Accumulator


	System
	System Components
	First Party (Certificate Authority)
	Third Parties (Edge Compute Providers)
	Client (e.g., Web Browser)

	Threat Model
	Compromised Third Parties (Edge Compute Providers)
	Integrity of the Accumulator Value


	AccuRevoke: Protocols and Implementation
	Security Goals
	Overview of the AccuRevoke Protocol
	First Party (i.e., CA) Operations
	Key Generation
	Accumulator Initialization
	Accumulator Update

	Third Parties (ECPs) Operations
	Partial Membership Witness Computation
	Partial Non-membership Witness Computation
	Collaborative Witness Construction
	Witness Distribution

	Client Operations
	Witness Request and Retrieval
	Witness Verification


	AccuRevoke: Implementation and Evaluation
	First-party: Accumulator Management
	Accumulator Implementation
	Accumulator Updates

	Third-party: Witness Generation and Reconstruction
	Witness for membership
	Witness for non-membership
	Witness reconstruction

	Client: Witness Validation

	Overcoming the Non-membership Witness Generation Bottleneck
	GPU Acceleration
	Insights
	Non-Membership Witness Generation on GPU


	Security Analysis
	Comparison with Other Approaches
	Conclusion
	References
	Appendix A: Formal Definitions
	Appendix B: Security Proof
	Appendix C: Meta-Review
	Summary
	Scientific Contributions
	Reasons for Acceptance
	Noteworthy Concerns


