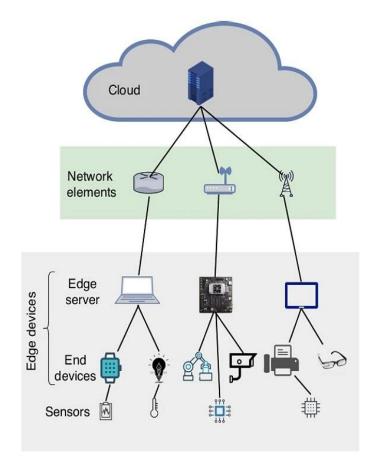
IPAFLB

Incentive-Based Privacy Preserving Asynchronous Federated Learning over Blockchain

Atharva Haldankar, Thomas Nguyen, Arman Riasi

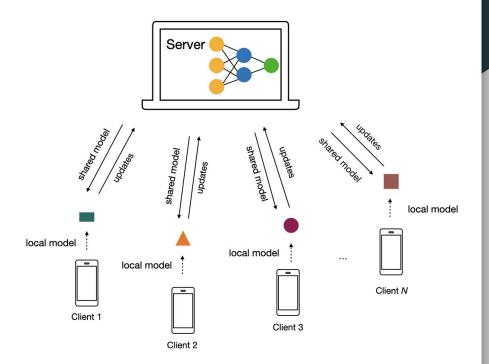
Introduction

- Edge devices gather a large amount of data
 - Conducive to ML
- Privacy & scalability concerns
 - -> Federated Learning (FL)
- FL Challenges:
 - Data and Device Heterogeneity
 - Privacy & Security Concerns
 - o Incentive for Good Behavior



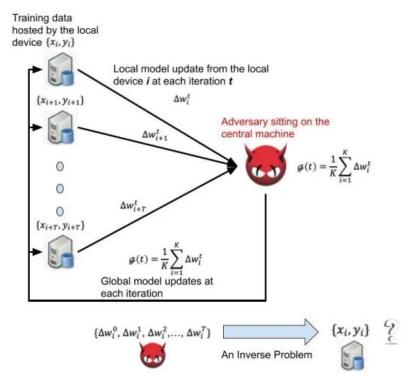
Federated Learning

- Data never leaves edge devices
- Organized into rounds
 - a. Clients download global model
 - b. Clients perform local updates
 - c. Clients upload model weights
 - d. Server aggregates client updates



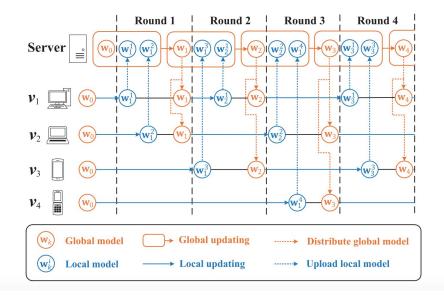
FL Challenges

- Straggler problem
 - Server has to wait for slowest client
 - Caused by device/data heterogeneity
- Privacy/Security
 - Membership Inference Attacks
 - Model Poisoning Attacks
- Incentive Mechanism
 - Encourage honest and active nodes



Asynchronous FL

- Clients can join training process at any time
 - Different notion of rounds
- Fully asynchronous:
 - One client update -> Global update
- Semi-asynchronous:
 - K client updates -> Global update
- Challenge: Staleness



Incentive Mechanism

- The incentive should encourage all nodes to actively collaborate on the training process
- We are interested in non-monetary incentives
 - Fairness: "better models" for nodes with major contributions
 - Personalize: meet client interest/objective (due to data heterogeneity)
- The ability to track/acknowledge major contributions for future rewards
- Challenge: require an applicable privacy-preserving method

State-of-the-Art Limitations

- Straggler effect due to data heterogeneity, limited bandwidth, network disruption
 - Causing the overall system to perform slower
- The gap between the current asynchronous approach and an applicable privacy-preserving mechanism
- For current incentive mechanisms:
 - Game-based monetary reward
 - Less contribution —> less effective model (by reweighting global model)

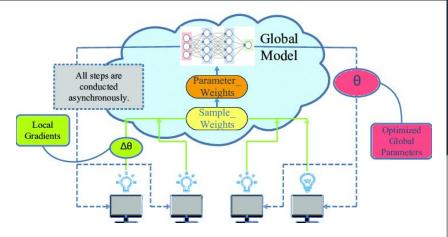
Our Contributions

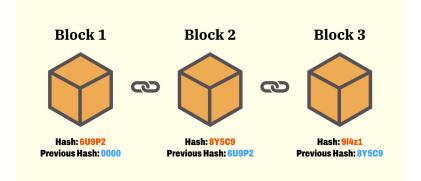
- We proposed a method for FL that works in a semi-asynchronous setting
- We applied a privacy-preserving mechanism to the proposed FL method
- We employed the blockchain as an immutable distributed ledger
- We studied existing incentive mechanisms for FL and their practicality

System Model

System Model

- N clients; 1 aggregation server
- Semi-Asynchronous FL setting
 - Server aggregation after k client updates
 - Staleness bound
 - Urgent notifications
- Blockchain
 - Immutable distributed ledger
 - Smart contracts
 - Record encrypted weights

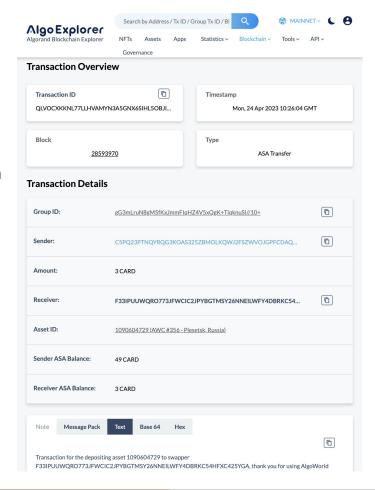




Network Model

Network Model

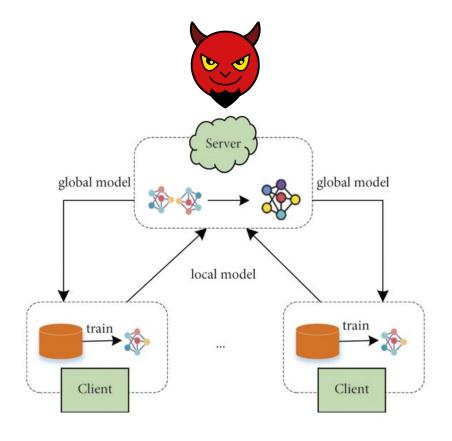
- The interaction between clients and the aggregation server occurs through blockchain smart contracts:
 - O The Smart Contract ID:
 - The identification number for smart contracts.
 - The Transaction Note Field:
 - The area for noting transaction information.



Threat Model

Threat Model

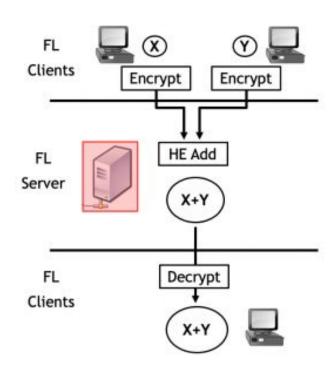
- Adversary: server
- Goal
 - Break confidentiality
 - Infer client data from model uploads
- Semi-Honest (Honest-but-curious)
 - Server will follow the protocol
 - However, will try to infer sensitive client data



Security Model

Security Model

- Homomorphic Encryption
 - Allow aggregation on encrypted local models
 - Achieve confidentiality
- Blockchain as a distributed ledger
 - Allow clients to commit their local models in an asynchronous manner
 - Acknowledge client contribution in FL process
 - Achieve immutability



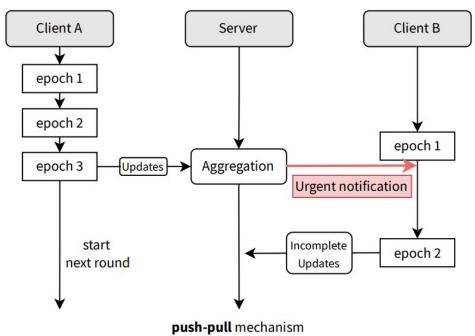
Research Methodology: Terminology

$t - \tau$	Staleness Value
$s(t-\tau)$	Staleness function
Ω	Staleness bound
П	Threshold weight difference
$w_t^{}$	Global model on epoch t
w_t^i	Client i's uploaded weights on global epoch t

Research Methodology: AFL

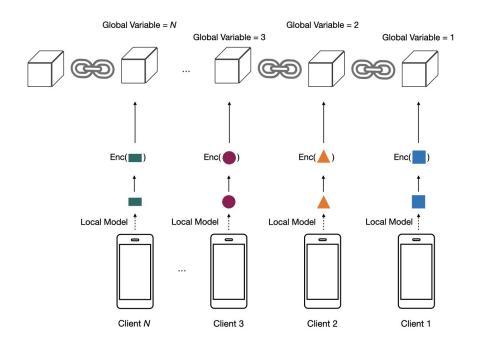
- Server aggregates weights after k client updates, unless:
 - One or more clients reach the staleness bound (Case #1)
 - $t \tau = \Omega$
 - Those clients are sent an urgent notification from the server
 - A client upload significantly changes the global model (Case #2)
 - $\blacksquare \qquad w_t^i w_{t-1} >= \Pi$
 - lacktriangle All clients training on w_{t-1} or an earlier model get an urgent notification
- Upon receiving the urgent notification:
 - Clients finish current local epoch then upload weights to server
 - Server doesn't aggregate until receiving all stale client updates

Research Methodology: AFL



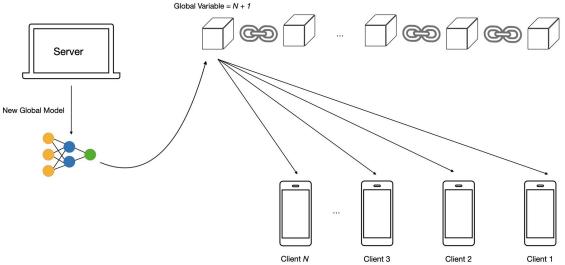
Research Methodology: Privacy Preserving

- What is the role of each Client?
 - What to upload?
 - Encrypted weights
 - Where to upload?
 - Smart Contracts



Research Methodology: Privacy Preserving

• What is the role of the Server?



Conclusion & Future Work

- We proposed a semi-asynchronous approach for FL:
 - Achieve confidentiality for the FL process under semi-honest server
 - Use blockchain to acknowledge contribution and achieve immutability
- Future work:
 - Analyze convergence rate for FL on the proposed semi-asynchronous method
 - Research security mechanisms for preventing poisoning attack
 - Research metric to quantify major contributions from the clients
 - Adjust global model to incentivize clients based on their interest

Thank You