Blockchain-based Access Control Systems

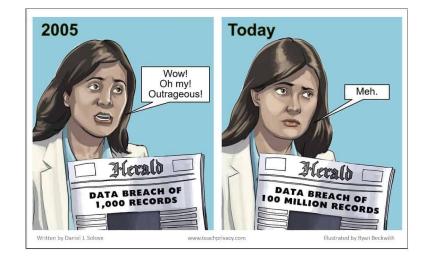
Group 2 Yuan Ma, Ting-Jui Hsu, Tianbo Lu, Zeng Tao

Apr. 18, 2023

Contents

- Introduction & related works
- Problem statement
- System design
- Network model
- Demonstration
- Security & threat model
- Conclusion

Introduction & Related Works


The access control systems

The risks of centralized access control systems

- Data breaches
- Vulnerable to single-point failures low fault-tolerant

The advantages of blockchain-based access control systems

- Tamper-proof
- Fault-tolerant
- Scalable

The implementation challenges in different areas

Internet of things (IoT)

- Efficiency low computing power
- Trade a bit security for performance
- Xu Yang used modular square root and the re-implemented smart contract

Healthcare

- Privacy and data sharing
- There is no operating blockchain-based access control systems
- Junsong Fu stored electrical medical records (EMRs) on blockchains and transferred the data with encoded EMRs

Problem Statement

Problem statement

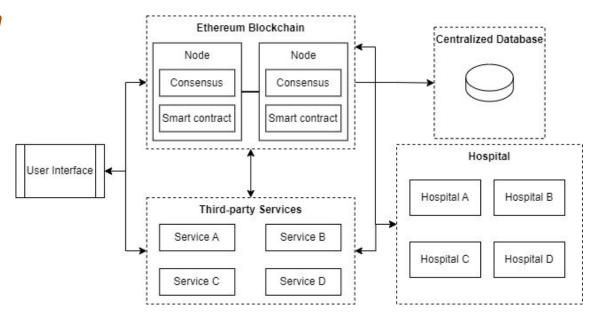
Context

- Healthcare industry
- Sharing data is complex
- Need to maintain several accounts
- It is hard for patients control the accessibility

Problem statement

Proposal

- Blockchain-based framework for secure data sharing and access control within a healthcare ecosystem
- The system can share data with hospitals and third-party healthcare providers
- Patients can permit/withdraw/reject the access requests from hospitals and healthcare providers
- Patients only need one digital identification rather than multiple accounts



System Design

Architecture

DAC & Ethereum blockchain

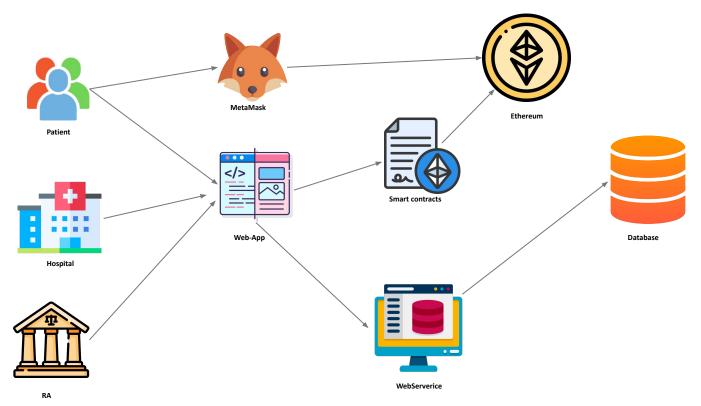
- Identity integration
- Secure data sharing
- Authorization

Implementation

Ethereum local network

Server

Application



Network Model

System components communications and connections

User Registration

User Authentication

User Binding

Login with Ethereum Account

User Access Manager

Functions in the process of development

Organization Registration

Organization Data View

Security & Threat Model

Analysis of General Attacks on Purposed System

Sybil Attacks

- ✓ PoA makes it harder for an attacker to launch a Sybil attack, as only authorized nodes can participate in the consensus process.
- A Sybil attack can still be carried out if an attacker creates a significant number of fake identities that mimic authorized nodes.

51% Attacks

- ✓ PoA provides better protection against a 51% attack than PoW or PoS.
- Even with PoA, a 51% attack is still possible if an attacker manages to gain control of a majority of the authorized nodes in the network.

Proposition & Analysis of Other Attacks

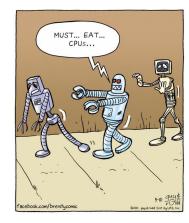
Reuse Permission Attack

When a permission token is leaked, a malicious user without valid permission might query data in the permissioned blockchain

Sol

- Using JWT tokens re-authenticating the user for each request
- Implement additional security measures such as secure token storage, token encryption

Proposition & Analysis of Other Attacks

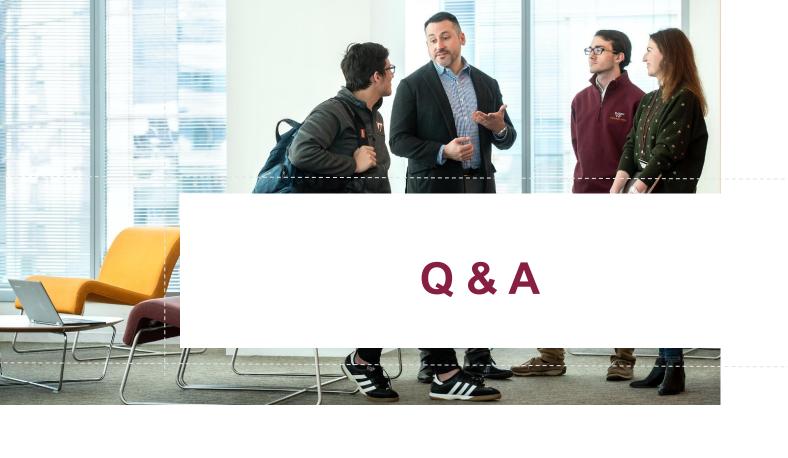

Distributed Denial of Service (DDoS) attack

Attackers flood the network with traffic, leading to a disruption in its operation

Sol

- Implement rate-limiting and throttling mechanisms to reduce requests or traffic surges
- Optimize the system design by extending the architecture to a multi-layer or integrating
 - distributed network infrastructure, such as Content Delivery Networks (CDNs)

Conclusion


Milestones

- Designed and implemented a blockchain-based access control system using Ethereum and POA consensus algorithm.
- Completed end-to-end development and deployment of the frontend, backend, and smart contract components.

Remaining Works

- Enhance security features to mitigate potential attacks, such as Sybil and insider attacks.
- Conduct further experiments to validate the system's performance under different network conditions and workloads.

Thank You

