

Vulnerabilities in Smart
Contracts

Raghav Agrawal
James Hinton
Sydney May
Rohit Sathye

OUTLINE

WHAT TO EXPECT
1. Problem Statement

2. Motivation

3. Limitations

4. System, Network, Threat and Security Models

5. Our Work

6. Results

7. Challenges

8. Conclusion

PROBLEM STATEMENT
MOTIVATION
LIMITATION

ELEPHANT IN THE ROOM

What if Smart Contracts are not SMART!

Immutable on the Blockchain?

Vulnerabilities live forever.

ELEPHANT IN THE ROOM

What if Smart Contracts are not SMART!

Immutable on the Blockchain?

Vulnerabilities live forever.

ELEPHANT IN THE ROOM

What if Smart Contracts are not SMART!

Immutable on the Blockchain?

Vulnerabilities live forever.

What are the most common security vulnerabilities in Smart
Contracts? How can they be identified? How can the be fixed?

WHY WE CHOSE THIS

Smart Contracts : hot topic in Blockchain

Team majoring in Security

Project = Smart Contracts + Security

LIMITATIONS

Vulnerability Scanners for smart contracts are EVERYWHERE…

…But MULTIPLE are needed to FULLY check for vulnerabilities in smart contracts

Having to use multiple scanners to check the security of a smart contract puts the
burden of security on the user

This can lead to many users AVOIDING VULNERABILITY SCANNING their smart
contracts at all as scanning is seen as TOO LARGE A BURDEN

MODELS

SYSTEM
Components:
● Code
● Storage
● Balance
● Address

Actors:
● Miners
● Oracles
● Users
● Other Smart Contracts

**Image Credit: S Kushwaha, et al., 2022

**

NETWORK

**Image Credit: https://image.slidesharecdn.com/writesmartcontractwithsolidityonethereum-180817132746/95/write-smart-contract-with-solidity-on-ethereum-3-638.jpg?cb=1534512562

**

THREAT
1. Code vulnerabilities

2. Malicious code

3. Social engineering

4. Supply chain attacks

5. Governance issues

SECURITY
1. Implement Robusts Access Control

a. Ownable Pattern
b. Role Based Pattern

2. Use safe code functionality
a. assert()
b. revert()
c. require()

3. Test Contracts and Verify Code Correctness
4. Independent Code Reviews
5. Implement Disaster Recovery Plans
6. Event Monitoring
7. Reduce Code Complexity
8. Defend Against Common Code

Vulnerabilities

WHAT WE DID

DAMN VULNERABLE SMART CONTRACT

DAMN VULNERABLE SMART CONTRACT

● Smart Contract like DVWA

● 7 vulnerabilities packed into one contract
○ Reentrancy
○ Arithmetic Issues
○ Unchecked return values
○ Access control
○ Denial of Service
○ Bad Randomness
○ Front-Running

Credit: M. Ren et al., 2021

Reentrancy

● FALLBACK function of the “sender”

● Evil sender calls vulnerable Smart Contract again

● Recursive call

● Empty the Smart Contract

● HARD FORK

Arithmetic Issues

Arithmetic Issues
● Overflow
● Underflow

Arithmetic Issues
● VAR keyword (deprecated)

Access Control

Access Control
● Who is allowed to call the function?

● Parity multi-sig Wallet

Unchecked Return Values
● Low level functions like CALL

● What happens when they fail?

● FALSE return value

● Need to catch to maintain proper state

Unchecked Return Values

Denial Of Service

● Logic Vulnerability

● Can render the contact
useless

● Probably caused by other
vulnerability

Here:
Funds get transferred to admin,
so users can not cancel their bid.
Even if admin fixes, attacker can
relaunch the attack.

Bad Randomness

● Using a non-random value for
randomness

● Ex: using the hash of a block as
random number is not safe

● Block is recent so attacker can
recompute rand num easily

Front-Running

● No private data should NEVER be
stored in a smart contract

● Storing solution = attackers steal and
copy tx with higher fee

● Result: attacker tx chosen by miner
and attacker wins prize

VULNERABILITY SCANNING

Process of systematically identifying
vulnerabilities in software by using
different techniques.

The purpose of this is to detect
potential security weaknesses that
can be exploited by attackers.

Some popular techniques to detect
vulnerabilities:
1. Code Review
2. Static Analysis
3. Dynamic Analysis

a. Fuzzing
4. Penetration Testing

1. Code Review
Manually checking syntax errors, logical flaws, and other vulnerabilities

Which code below do you believe prevents a vulnerability from occurring?

1. Code Review

Only checks if input does not contain ‘i’ or ‘&’
○ Would allow an attacker to execute arbitrary commands on host operating

system

1. Code Review

Checks if input only has valid characters

2. Static Analysis
Takes an input (source code of a smart contract) and returns if it satisfies a property or not

Important to note that it does not execute the input

It reasons all the possible paths the input could take during the execution
○ Example: examining the structure of the source code to determine what it would

mean for the contracts operation at runtime

3. Dynamic Analysis
Dynamic analysis generates symbolic
inputs or concrete inputs to a smart
contracts functions to see if any execution
trace(s) violates specific properties

The tradeoff with dynamic analysis is that:
○ Can identify vulnerabilities that

only appear during execution
○ Can be more time consuming and

require more resources to perform

3a. Fuzzing
Fuzzing is an example of dynamic analysis technique for verifying arbitrary properties in
smart contracts

Main idea:
○ Send randomized input data to an application

■ Usually corrupted, unexpected data types/formats, or larger than normal amount
of data

○ See if any weaknesses in the application's input validation or error handling
processes appear
■ Usually leads to buffer overflows or code injection

The main advantage of fuzzing is that it can simulate real-world scenarios

The main disadvantage of fuzzing is that it may require significant computing resources and
expertise

○ Also important to note this does not find all vulnerabilities

4. Penetration Testing
Penetration testing involves simulating
real-world attacks on a smart contract to
identify vulnerabilities

Usually involves a team of security
professionals who identify vulnerabilities,
then attempt to exploit them

The main difference between fuzzing and
penetration testing:

○ Fuzzing focuses on input validation
or error handling processes

○ Penetration testing focus
vulnerabilities through real-world
attacks and assess the security
posture of the smart contract

Fuzzing

Penetration
Testing

Contract Analysis Tools

RESULTS

Contract Vulnerability Echidna Slither Securify Remix

dvsc.sol Reentrancy YES YES YES YES

dvsc.sol /
dvsc2.sol

Unchecked Math
Underflow / Overflow

YES NO NO NO

dvsc2.sol Incorrect Declarations
(var in dvsc2.sol)

NO NO YES NO

dvsc3.sol Visibility/ Exposed Secrets NO YES YES NO

dvsc3.sol Bad Randomness YES YES NO NO

dvsc.sol Unchecked Return values NO NO YES YES

dvsc.sol Access Control NO YES YES NO

7 3 4 5 2

CHALLENGES
Some Vulnerabilities Difficult to Implement: Time Manipulation, Short
Address

Some Vulnerabilities are Unknown or Not Yet Exploited

Not all Vulnerability Scanners for Smart Contracts are Open-Sourced
Attackers be like:

CONCLUSIONS

LEARNINGS
Smart Contracts can be very vulnerable

Creating a vulnerable smart contract = easy

Creating a secure smart contract = difficult

CONCLUSIONS

Write secure smart contracts

Implement access control mechanism and minimize the attack surface

Thoroughly test your smart contract

Stay current with the latest security threats and vulnerabilities in the smart contract
industry

REFERENCES
Kushwaha, S. S., Joshi, S., Singh, D., Kaur, M., & Lee, H. N. (2022). Systematic review of security
vulnerabilities in ethereum blockchain smart contract. IEEE Access, 10, 6605-6621.

Li, W., Bu, J., Li, X., & Chen, X. (2022, August). Security analysis of DeFi: Vulnerabilities, attacks and
advances. In 2022 IEEE International Conference on Blockchain (Blockchain) (pp. 488-493). IEEE.

Mense, A., & Flatscher, M. (2018, November). Security vulnerabilities in ethereum smart contracts. In
Proceedings of the 20th international conference on information integration and web-based applications &
services (pp. 375-380).

Ren, M., Ma, F., Yin, Z., Fu, Y., Li, H., Chang, W., & Jiang, Y. (2021, August). Making smart contract
development more secure and easier. In Proceedings of the 29th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software Engineering (pp.
1360-1370).

Sayeed, S., Marco-Gisbert, H., & Caira, T. (2020). Smart contract: Attacks and protections. IEEE Access, 8,
24416-24427.

QUESTIONS

