

[40] 4. The smart contract below is to be used as a third party to donate funds to other users.

// SPDX-License-Identifier: MIT
pragma solidity ^0.6.0;

contract Vulnerability {
 mapping(address => uint) public balances;

 function donate(address _to) public payable {
 balances[_to] = balances[_to] + msg.value;
 }

 function balanceOf(address _who) public view returns (uint balance) {
 return balances[_who];
 }

 function withdraw(uint _amount) public {
 if(balances[msg.sender] >= _amount) {
 (bool result,) = msg.sender.call{ value:_amount }("");
 if(result) {
 _amount;
 }
 balances[msg.sender] -= _amount;
 }
 }

 receive() external payable {}
}

A. Research common smart contract vulnerabilities and explain in detail why this
contract is not secure and how an exploiter can exploit this contract to steal all the
funds deposited in the contract. We have provided the exploiter contract at
contracts/VulnerabilityExploit.sol. Try to analyze the logic of this exploiter contract
and how it might interact maliciously with the vulnerable contract
(contracts/Vulnerability.sol).

Hints: If a function from one contract is called from another contract, msg.sender will be the calling
contract’s address. The unnamed receive() external payable function is a fallback function (if you
are unfamiliar with a fallback function, research what a fallback function is).

(Include the answer to this question in the file named Answers.PDF).

B. Similar to the auction question, we have provided the source code for this contract in
the repository at contracts/Vulnerability.sol. Fix the contract to make it secure and not
prone to the vulnerability described in part (A). Only edit contracts/Vulnerability.sol
and do not change any function names, variable names, parameters, etc. Leave all other

